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Abstract—We present a cancer genomic analysis pipeline which takes as input sequencing reads for both germline and tumor

genomes and outputs filtered lists of all genetic mutations in the form of short ranked list of the most affected genes in the tumor, using

either the Complete Genomics or Illumina platforms. A novel reporting and ranking system has been developed that makes use of

publicly available datasets and literature specific to each patient, including new methods for using publicly available expression data in

the absence of proper control data. Previously implicated small and large variations (including gene fusions) are reported in addition to

probable driver mutations. Relationships between cancer and the sequenced tumor genome are highlighted using a network-based

approach that integrates known and predicted protein-protein, protein-TF, and protein-drug interaction data. By using an integrative

approach, effects of genetic variations on gene expression are used to provide further evidence of driver mutations. This pipeline has

been developed with the aim to be used in assisting in the analysis of pediatric tumors, as an unbiased and automated method for

interpreting sequencing results along with identifying potentially therapeutic drugs and their targets. We present results that agree with

previous literature and highlight specific findings in a few patients.

Index Terms—Pediatric cancer, genome analysis, next generation sequencing
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1 INTRODUCTION

AT the most fundamental level, cancer is a disease of the
DNA, in which changes to the DNA sequence and the

molecules that interact with it ultimately lead to uncon-
trolled cell proliferation. Thus high-throughput sequencing
technologies capable of identifying not only the DNA
sequence (DNA-seq) but, for instance, also epigenetic states
(e.g. Methyl-seq) and gene expression levels (RNA-seq),
hold the promise to help better understand cancer in all its
various forms. Indeed large-scale cancer sequencing proj-
ects, such as the Cancer Genome Atlas [1], have already
started and produced volumes of data that are already well
beyond what can be transferred over the Internet. However,
these projects are still at a relatively early stage of develop-
ment and are fraught with numerous challenges associated
with the complexity of the sequencing technology, the lack
of standardization, the sheer volume of data, the heteroge-
neity of cancers, the complexity of cancer biology, and the
problem of obtaining proper control samples, to name only
a few. Although incomplete by necessity, problems, solu-
tions, and results from these projects ought to be shared
periodically in order to move the field towards more stan-
dardized solutions and accelerate the pace of discovery.
Here we describe the ongoing development of a computa-
tional pipeline for the analysis of high-throughput

sequencing cancer data that is currently being applied to
pediatric cancer data that is regularly being sequenced, and
further resequenced on recurrence, as a result of a collabora-
tion between the University of California, Irvine (UCI) and
the Children Hospital of Orange County (CHOC).

Worldwide, it is estimated that childhood cancer has an
incidence of more than 175,000 per year, and a mortality rate
of approximately 96,000 per year. In the United States, can-
cer is the second most common cause of death among chil-
dren between the ages of 1 and 14 years, exceeded only by
accidents, with an incidence of about 12,000 of newly diag-
nosed cases per year and 1,300 deaths. The most common
cancers in children are (childhood) leukemia (34 percent),
brain tumors (23 percent), and lymphomas (12 percent).
Other, less common childhood cancer types are: Neuroblas-
toma (7 percent), Wilms tumor (5 percent), NonHodgkin
lymphoma (4 percent), Rhabdomyosarcoma (3 percent), Ret-
inoblastoma (3 percent), Osteosarcoma (3 percent), Ewing
sarcoma (1 percent), Germ cell tumors, Pleuropulmonary
blastoma, Hepatoblastoma, and hepatocellular carcinoma.
White and Hispanic children are more likely than children
from any other racial or ethnic group to develop cancer. The
causes of most childhood cancers are unknown. The CHOC
receives on the order of 100 new cases per year, and a project
was started in 2012 to sequence the genome from healthy
and cancer tissues of a subset of newly diagnosed cases—
and therefore with no emphasis on particular tumors or tis-
sue types—together with high-throughput gene expression
measurements from cancer cells using RNA-seq.

Our goal has been to develop an analysis pipeline com-
prising a combination of in-house and third party software
to manage and analyze the raw data produced by these
experiments, in a timely manner after they become avail-
able, including the identification and ranking of affected
genes containing both small and large variants, and their
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integrative systems biology analyses against the large back-
ground of omic, literature, and other data available to us in
order to derive inferences of clinical relevance specific to
the cancer types of the patients sequenced.

2 METHODS

2.1 Sequence Processing

2.1.1 Sequencing Data Generated for Each Patient

An overview of our pipeline is presented in Fig. 1. It begins
by collecting two different samples for each patient partici-
pating in the CHOC pediatric cancers project. The first sam-
ple is collected in the tissue affected by the cancer and the
second sample is collected either from blood or saliva
depending on the patient to be used as a control sample
during the analysis.

Both samples are then provided to either Complete
Genomics (Mountain View, CA) for the Cancer Sequencing
Service offered by the company or to Illumina, Inc. (San
Diego, CA) for a rapid sequencing of both control and can-
cer genomes using the RapidTrack WGS Service offered by
the company. When the sample extracted at the tumor tis-
sue is not exhausted by the DNA extraction, RNA sequenc-
ing is also performed using an Illumina HiSeq 2500
instrument either by the Scripps Research Next Generation
Sequencing Core Facility (San Diego, CA) or by the
Genomics High-Throughput Facility of the University of
California, Irvine (Irvine, CA). Sequencing platforms, data
vendors, patient description, and data obtained for each
patient are reported in Supplementary Table 1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2014.2330616.

2.1.2 Quality Controls and Data Filtering

The sequencing data quality is assessed based on the
standard PHRED quality scores predicted during the
base calling step on each sequencing platform and on the
base call distribution for each sequencing cycle. Sequenc-
ing reads for all the datasets generated on an Illumina
instrument are paired 100 bp reads. Sequencing reads
provided by Complete Genomics are paired 35 bp reads
where each 35 bp read is made of four shorter reads close
but not necessarily contiguous on the sequenced genome.
An overview of the sequencing data quality is provided
in Supplementary Figs. 1 and 2, available online. The
RNA sequencing data is subject to the same quality
controls and is pre-filtered to remove common contami-
nants in RNA-seq libraries. Reads mapping to the

mitochondrial or nuclear ribosomal RNA genes and PhiX
control reads are removed from the original datasets.

2.1.3 Alignment to Reference Genome hg19/GRCh37

Both Complete Genomics and Illumina deliver the short-
read alignment results as part of their sequencing service.
Alignments delivered by Complete Genomics are per-
formed using the CGA tools developed by the same com-
pany to handle the specific structure of the short-reads.
Alignments delivered by Illumina are performed using their
short-read aligner Eland v2e. The RNA sequencing data is
aligned to the reference genome hg19 together with the
known splice junction sequences extracted from the RefSeq
database using Eland v2e.

Genome and transcriptome coverage corresponding to
the DNA and RNA sequencing data is reported in Supple-
mentary Fig. 3, available online. The mean relative chro-
mosome coverage broken by gender and sequencing
platform is reported in Supplementary Figs. 4 and 5, avail-
able online, indicating a significant coverage bias for sev-
eral chromosomes on the Complete Genomics sequencing
platform.

2.2 Genome Assembly

2.2.1 Assembly Provided by the Sequencing

Companies

Control and cancer genomes are assembled separately by
both companies using a diploid model. The methods used
by each company to generate a consensus assembly from
the short-read alignment results have significant differences
(not discussed here), which results in assemblies with het-
erogeneous characteristics. For instance, alleles are tracked
individually by Complete Genomics whenever possible,
allowing to call a position on one allele only while leaving
the second allele uncalled. On the other hand, Illumina
calls are based on a consensus of the aligned reads for each
position resulting in either a position fully called or not
called. Another significant difference is in the strategy used
to call the small variations in the genome assemblies. While
Complete Genomics provides a final decision for each allele
and each position in the genome (including positions not
called, partially called, reference calls, snps, short indels,
and substitutions), the strategy followed by Illumina con-
sists in separating what is observed at each position in the
alignment results, the snp calling analysis and results, and
the indel calling analysis and results, leading to a situation
where conflicts between the different calls may occur.
Annotations provided with the predicted variations also
differ significantly.

2.2.2 Standardized Multi-Genome Assemblies

Rapidly evolving technologies and softwares, lack of stan-
dardization, and large volumes of heterogeneous data are
common issues in genomic analyses and are paired here
with the necessity to compare several assemblies for the
same individuals to extract relevant differences potentially
correlated with the corresponding disease. Our strategy to
limit the effects of these problems and provide uniform
downstream analyses for all the patients is to adopt a fixed

Fig. 1. Overview of the genomics analysis pipeline which starts from raw
sequencing reads derived from two biological samples per patient and
results in a HTML report with ranked genes and pathways.
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representation of genome assemblies consisting in three
major components: 1) the features needed for the down-
stream analysis; 2) a fixed level of description and anno-
tation; and 3) a standardized scoring system and data
format allowing multiple genome assemblies and RNA-seq
experiments to be rapidly combined with each other and
compared.

Features selected to describe each assembly include a
unique call for each allele, the called allele sequence, zygos-
ity, ploidy, call confidence level, read counts (coverage),
and genomic annotations corresponding to each position.
Annotations include promoter regions, untranslated regions,
transcription start site (TSS), start and stop codons, donor
and acceptor sites, exons, introns, coding regions, and tran-
scription factor binding sites (TFBS) predicted by our in-
house software MotifMap [2], [3].

Generating the assemblies following this model is a rela-
tively straightforward process starting from the assemblies
provided by Complete Genomics, due to the selected fea-
tures being a subset of the provided ones. On the other
hand, the assemblies provided by Illumina are completed
using in-house software to reach the same level of descrip-
tion: conflicting snp and indel calls are resolved based on
the PHRED score associated with each variant call, detailed
genomic locations are added based on the RefSeq annota-
tion database, and COSMIC annotations [4] are added to
the small variation calls whenever available.

2.2.3 Control and Cancer Genomes Comparison

The two assembled genomes for each patient can directly be
compared from the assemblies described in the previous
section. The comparative analysis is described in the next
sections but a few comments are given here as they apply to
all the comparisons we made on the assemblies and more
generally to the complexity of comparing genome assem-
blies. First, positions not fully called on both genomes and
both alleles have been excluded from the rest of the analysis
as they do not allow a reliable comparison between the two
genomes. Around 95 percent of the known positions in the
reference sequences are fully called on both genomes
regardless of the sequencing platform. Also, small varia-
tions are extracted for the entire genome but only the ones
located in genic regions (including promoter regions and
putative TFBS) are further studied during the next steps of
the pipeline. The numerous small variations located in the
intergenic regions fall into a more general problem out of
the scope of this study—that of identifying the consequen-
ces these variations may have on the organism. They are
thus counted for information but not further analyzed.

2.3 Small Variations

Small variations are usually defined as the DNA differences
with the reference genome sequences that can be directly
observed in and predicted from short sequencing reads, i.e.,
of very limited size. These variations can be accurately pre-
dicted in many cases, are widely studied, reported in
numerous databases, and many of them are already docu-
mented for their possible implication in diseases together
with their frequency in the population. They are thus of
great interest for genomic analyses and the focus of many
studies worldwide.

2.3.1 Comparative Analysis

The small variations called during the genome assembly
(see Section 2.2) are classified into four categories: SNPs,
insertions, deletions, and substitutions. Between 4 and
4.5 million such variations with the reference sequences are
called for each assembled genome in this project. The
sequencing platform used and the software developed by
both data vendors to call the small variations do not affect
significantly this number. The reliability of many called
small variations could easily be discussed as it is to be
expected that alignment algorithms, small variation calling
methods, and the natural complexity of predicting these
variations in many regions of the genome probably result in
many false calls and systematic biases. However, in our
case, the two samples for each patient in the CHOC pediat-
ric cancers project are sequenced on the same platform and
the genomes are assembled using the same methods and
software, hence a significant part of the biases and false calls
is thus likely to be repeated on each assembly. By compar-
ing both genomes and extracting only the differences
between the cancer genome and the control genome, we can
reasonably assume these issues to affect the resulting set of
variations significantly less.

Variations observed between the cancer genome and the
control genome only represent a very small fraction of the
variations called on both genomes, less than 0.01 percent in
most cases (example provided for one patient in Table 1),
reducing drastically the number of variations to further ana-
lyze for each patient. Variations observed on both genomes
are not studied further regardless of the effect these varia-
tions may have on proteins when they occur in gene regions.

2.3.2 Variant Location and Effect

Small variations observed only in the cancer genome and in
genic regions can be further analyzed as their effect on the
resulting proteins can be directly deduced from their

TABLE 1
Typical Distribution of the Small Variations

Variation Control DNA vs Reference Cancer DNA vs Reference Cancer DNA vs Control DNA

SNPs 3,359,243 76.08% 3,356,920 76.11% 36,931 40.15%
Substitutions 207,760 4.71% 209,452 4.74% 20,545 22.33%
Deletions 637,146 14.43% 633,823 14.37% 31,024 33.73%
Insertions 201,883 4.57% 200,976 4.56% 3,472 3.77%
Mixed 9,381 0.21% 9,193 0.21% 14 0.02%
Total 4,415,413 4,410,364 91,986

Mixed variations include cases where different small variants are called between the two alleles of a genome or between the two genomes.
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location in many cases. Eight distinct types of disruptions or
changes in the proteins are considered in our pipeline.
Seven of them are inspired by the classification of the vari-
ant effects performed by the CGA tools (Complete Geno-
mics) and we added the loss of heterozygosity between the
germline and cancer genomes, frequently reported in cancer
cases [5], resulting in the following classification:

� Missense (change of amino-acid)
� Nonsense (premature stop codon)
� Nonstop (stop codon altered)
� Misstart (start codon altered)
� Splicing (variation in a donor or acceptor site)
� Frameshift (indels changing the reading frame)
� Inframe (indels not changing the reading frame)
� loss of heterozygosity (LOH).
Variations not matching with any of these eight catego-

ries either correspond to silent variations (no effect on the
protein) or to variations with unknown effect on the protein
(e.g., located in intronic regions). Variations with unknown
effect are not considered in the network analysis described
in Section 2.6 due to the lack of information about the sever-
ity of the effect on the corresponding product. These varia-
tions are therefore kept aside for cases where a gene is
predicted to be disrupted by the differential expression
analysis but does not have variations included in one of the
eight categories above or in the large variations described in
Section 2.4 explaining this disruption.

For each of the eight variant effects listed above, we use
the hg19 gene coordinates to extract the list of genes over-
lapping the called small variations. The confidence for a
gene to be actually affected by such variation is directly
given by the confidence of the small variation call. The sizes
of the gene lists for each patient are summarized in Table 2
and range from a few genes for the most deleterious varia-
tions to a few hundred genes for missense mutations, which
are more common and less likely to be deleterious than
other variations.

2.3.3 Small Variations in Transcripts

RNA sequencing data is available for a large portion of the
patients in this project. Small variations can therefore also

be called for the transcripts based on the alignment results
(Section 2.1.3). We use the software developed by Illumina,
Casava variant detection and counting (VDC), to extract
SNPs and indels following the same protocol as the one
used by Illumina for their DNA sequencing service. The
resulting variations are used as an additional control for the
clinically relevant results emerging from the final network
analysis.

2.3.4 Flagged Small Variations

Putative small variations, specifically single nucleotide
polymorphisms (SNPs), have been categorized into three
subsets—unique, common, or flagged—with respect to
the latest dbSNPs (version 137) tracks from the UCSC
Genome Browser [6]. Specifically, when creating these
subsets we used the curated subsets of dbSNPs referred
to as Common SNPs and Flagged SNPs.

SNPs that have a minor allele frequency of at least
1 percent and that are mapped to a single location in the ref-
erence genome assembly are included in the Common SNPs
subset. Taken as a set, these commonly occurring SNPs
should be less likely to be associated with severe genetic
diseases.

Further, for the Flagged SNPs, only SNPs flagged as clin-
ically associated by dbSNP, that map to a single location in
the reference genome assembly, and not known to have a
minor allele frequency of at least 1 percent, are included.
SNPs that do not fit into either the common or flagged
SNPs subsets are categorized as unique SNPs, specific to
the patient.

2.3.5 Protein Domains

Besides the commonly characterized effect of small varia-
tions on protein coding sequence detailed in Section 2.3.2,
we characterized the location of small variants based on
predicted secondary structure and solvent accessibility
using the SCRATCH software suite [7], [8]. In addition, pro-
tein domain families predicted by Pfam [9] are used to iden-
tify if the small variation affects a protein family domain,
which in many cases can identify important functional por-
tions of a protein such as protein binding domains. This

TABLE 2
Mean Size and Standard Deviation of the Gene Lists Extracted During the Various Stages of the Analysis for Each Patient

Small Variations Large Variations Gene Expression Curated Gene Lists

Gene List Mean StdDev Gene List Mean StdDev Gene List Mean StdDev Gene List Mean StdDev

Missense 589.9 437.1 Deletion 406.2 555.1 Under expr. HIGH 52.0 67.1 Entrez 154.6 134.5
Nonsense 26.2 27.8 Inversion 234.3 325.1 Under expr. MED 433.2 172.3 MEDLINE 70.8 69.5
Nonstop 2.0 3.0 Tandem-Dup 122.8 188.1 Under expr. LOW 14.2 21.7 GeneRIF 63.7 74.1
Misstart 1.2 2.0 Distal-Dup 8.3 27.6 Over expr. HIGH 24.8 42.7
Splicing 31.4 28.0 Inter-Chr 51.0 51.2 Over expr. MED 438.2 99.6
Frameshift 113.3 161.2 Gene Fusion 24.4 21.7 Over expr. LOW 4.9 11.2
Inframe 61.4 51.0 Higher CNV 782.2 1221.8 All tumors HIGH 54.9 71.1
LOH 179.6 321.5 Lower CNV 488.4 1423.3 All tumors MED 457.0 147.7

All tumors LOW 74.0 82.1
Tumor sig. 1430.4 489.8
Control sig. 1087.2 1208.5
Contrast sig. 2455.7 3011.0

UNION 781.1 563.6 UNION 2030.3 1774.7 UNION 4897.9 2570.6 UNION 243.3 196.2

These lists are used in computing a ranking score for each gene in the final reports.
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information is incorporated into our final report in order to
manually investigate the consequences of small variations.

2.3.6 Variant Transcription Factor Binding Sites

Putative transcription factor binding sites for the human ref-
erence genome build hg19 are predicted using MotifMap
[2], [3]. A conservation score of at least 2 (the bayesian
branch length score (BBLS)), along with a FDR score of at
most 0.20 (computed using randomly permuted motifs) are
used to filter potential binding sites down to a total of
3,523,896 sites across the 717 transcription factors annotated
by TRANSFAC (version 9) and JASPAR. TFBS are over-
lapped for variants falling within 5 bp of the consensus to
identify possible deleterious regulatory connections in our
network analysis.

2.4 Large Variations

Large variations, also refered to as structural variations, are
the large-scale chromosomal variations or rearrangements
leading to a significant change in the classical organization
of the DNA in the genome. There is no software specifically
recognized to perform significantly better than the others in
this area and the accuracy of the predicted large variations
is still very unclear in most cases. Moreover, the consistency
between the different types of large variations predicted by
separate tools and with the genome assembly (Section 2.2)
is not checked or resolved by such tools. Such a task can
rapidly become complicated as structural variations can be
very complex to track in some cases, notably using only
short reads. The different types of large variations consid-
ered in our pipeline are described below.

� Novel junctions are observed junctions between dis-
tant parts of the genome (intra- or inter-chromo-
somal). The position of each partner in the junction
and the direction of the sequences observed on the
sequencing reads allow us to predict the correspond-
ing large variation event: inversion, deletion, tandem
or distal duplication, or inter-chromosomal rear-
rangement. These large variations are provided by
each of the vendors.

� Gene fusions are a special case of novel junctions lead-
ing to the fusion of two distantly located genes
resulting in a new, functionally different protein
product. Detecting putative gene fusions can be per-
formed by analyzing each partner position in the
detected novel junctions. This analysis is performed
by Complete Genomics and performed in-house for
the data delivered by Illumina.

� Copy number variations (CNVs) are relatively large
deletion or duplication events leading to a different
number of copies observed for specific regions of the
genome. They can, for instance, be detected by com-
paring the coverage in each region of the genome
with baseline distributions computed on control
populations.

� Chromosome duplications or deletions are a particular
case of CNVs where an entire chromosome is either
missing or observed with more than two copies.
Their detection is very similar to CNVs but requires

an overall coverage bias. These variations are
detected using in-house software and further vali-
dated based on the expression results obtained fol-
lowing the protocol described in Section 2.5.

Comparing the exact positions or sequences of the pre-
dicted large variations in both genomes results in most cases
in classifying all of the large variations predicted in the can-
cer genome as being specific to that genome. We thus imple-
mented a case-by-case set of rules based on the overlap
length between the large variations predicted for the base-
line genome and the ones predicted for the cancer genome
(not detailed here) to decide if a large variation is likely to
be unique to the cancer genome or not. Similarly to the
small variations, we list all of the genes affected by large
variations in the cancer genome considering the eight fol-
lowing categories:

� Deletion
� Inversion
� Tandem-duplication
� Distal-duplication
� Inter-chromosomal rearrangement
� Gene fusion
� Higher CNV
� Lower CNV.
The sizes of each of these gene lists are summarized in

Table 2.

2.4.1 Mitelman Fusions

The Mitelman database [10] contains 3,752 entries corre-
sponding to gene fusions implicated in different types of
cancer. To identify and prioritize these gene fusions in our
patients, we cross this database with all of the gene fusions
found for each patient to identify high-priority fusions and
to present the relevant literature in our final reports that are
of clinical relevance. Three of the patients in our study con-
tained fusions previously described. These fusions were
originally identified in the same tumor type as each of the
patients. All identified Mitelman fusions are listed in Sup-
plementary Table 4, available online.

2.5 Expression Analysis

Gene expression levels in the tumor samples are com-
puted directly from the read alignment results. Standard
RPKM values (reads per kilobase of exon model per mil-
lion mapped reads) are computed for each exon, splice
junction, and isoform covered by the sequencing data.
No RNA sequencing data is available for the baseline
genome samples, or any other control tissue samples,
and therefore standard differential analysis of the gene
expression levels cannot be performed for each patient.
Various approaches are considered in our study to pre-
dict abnormal gene regulation and are described in the
next sections.

2.5.1 RNA-seq Differential Analysis

In the absence of tissue-matched control RNA-seq samples
for each patient—which in many cases is not feasible to
obtain—each patient’s RPKM values are compared to a
pooled sample created by combining the other patients’
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RPKM values. Differential analysis of RPKM-normalized
read counts is performed using CyberT [11] which was
recently upgraded to handle both DNA microarray and
RNA-seq data [12]. A confidence in the Bayesian prior of 3
is used instead of the default of 10 within CyberT to esti-
mate the variance in gene expression. Rather than use strict
p-value cutoffs, the top 5 percent most significantly over- or
under-expressed genes, as well as the top 5 percent least sig-
nificantly changing genes, are retained for down-stream
analysis. The sizes of each of these gene lists are summa-
rized under the gene expression column in Table 2.

2.5.2 Variant Transcription Factors

Transcription factors have been shown to have a large role
in tumor progression, as evidenced by a large number of
transcription factors that are known tumor suppressors. We
identify potentially important affected transcription factors
by making use of the predicted TFBS described in Sec-
tion 2.3.6. For each transcription factor, we determine the
number of binding sites predicted within 3 kb upstream
and 1 kb downstream of the transcription start site of all
transcripts in the human genome. We compare these counts
to those within the same distance to genes in each of the fol-
lowing three lists:

1) The top 5 percent under-expressed genes in the
patient vs. other patient RNA-seq differential analysis

2) The top 5 percent over-expressed genes in the patient
vs. other patient RNA-seq differential analysis

3) The top 5 percent differential genes in the control vs.
tumor microarray data obtained for this patient’s
cancer type, as described in Section 2.7.3.

We use a Fisher’s Exact test to determine significance of
the number of binding sites within the above lists, as com-
pared to the 36,742 transcripts annotated in the human
genome, and subsequently rank transcription factors by p-
value. For each enriched transcription factor with p-value
less than 0.05, we determine if the protein for that tran-
scription factor is affected by any small or large variations
or has abnormal gene expression for that patient. This
results in lists of approximate 0-20 variant transcription
factors per patient. In conjunction with the expression of
the putative targets of these factors, we can identify what
are likely causal relationships between over- or under-
expression of certain factors and subsequent over- or
under-expression of their targets.

2.5.3 Tissue Specific Expression

The Human U133A Gene Atlas data set [13] is obtained
from BioGPS [14] to be used as a measure of normal tissue
expression for the tissues most similar to the tumor sample
obtained in each patient. This determines a baseline gene
expression profile in healthy tissue to be used as a control.
This dataset contains GCRMA values as a result of normali-
zating the microarray samples obtained from 79 human tis-
sues. Combining these with the RPKM values from the
RNA-seq analysis, we generate profiles of gene expression
in (1) all patient tumor tissue samples and (2) all of the
matched normal tissue samples, in order to identify abnor-
mal patterns of expression in patients, i.e., those that would

not be expected due to normal differences between tissues
from which tumors were obtained.

2.6 Network Analysis

It has been shown that cancer cells share in common multi-
ple acquired capabilities that enable the cell to proliferate
uncontrollably. These hallmarks of cancer have been
highlighted previously [15], [16] and show a wide range of
known pathways to be affected across different types of
cancer. To visualize the connections between affected genes
for each patient within known pathways—as well their
connections to unaffected proteins—networks are created
using in-house software which are then rendered in a web
browser using CytoscapeWeb [17].

In order to initialize networks with proteins related to
specific pathways, 478 known pathways are downloaded
from KEGG Pathways [18] and the NCI Pathway Interaction
Database [19]. Subsequently, transcription factor (TF)-DNA,
TF-TF, protein-protein edges are added to the network
based on the publicly available datasets from MotifMap [2],
[3] and BioGRID [20], respectively. Variants on proteins, as
well as the proteins identified as differential in the microar-
ray and RNA-seq analyses, are used to highlight portions of
the network and help visually interpret the biological role
of the mutations. Variant TFBS are visualized by highlight-
ing the edges between transcription factors and the genes
that contain a site for that factor within its promoter. Fur-
ther, drug-protein interactions are added to the network, as
described in the next section. Taken together, this network
approach assists in investigating potential driver mutations
with a focus on identifying potential drug candidates and
their targets. A simplified example of such a network is
shown in Fig. 2.

2.6.1 Drug Targets

In order to elucidate potentially druggable therapeutic tar-
gets, we have integrated several publicly accessible data-
bases of drugs into our network analysis. We have included
well-characterized and predicted drug-effects, binding
affinities, and drug-efficacy. These databases include the
following resources:

� DrugBank [21], [22], [23]

Fig. 2. Example of a network with drug, interaction, and transcription
databases used to relate transcripts to each other and to potential drugs.
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� BindingDB [24]
� PharmGKB [25].
Each database provides an orthogonal set of annotations

from which one can infer potential attenuation of known
drug-effect, or perhaps novel drug interaction. Additional
drug and drug-target information were also incorporated
using semantic web resources for open drug data. These
include Bio2RDF [26], [27], Chem2Bio2RDF [28], and Linked-
Open Drug Data (LODD) [29]. Fig. 3 shows the original
AML pathway from the KEGG database. Fig. 4 shows the
corresponding auto-generated drug-target network used in
exploring potential therapeutic targets.

To assist in identifying potential therapeutic drugs, we
use a network-based approach which leverages the auto-
generated networks for all pathways. For any gene target,
we identify which KEGG or NCI pathways it is present in,
and perform a breadth-first search starting at the gene target
until we find a drug with an affected gene target. Addition-
ally, if multiple such drug-targets exist at the same distance
from our initial target, we choose the drug that targets the
most genes, with preference given to drugs with a greater
number of affected targets. Fig. 4 shows the set of drugs
reached by this method via a search originating from each
of the affected genes in the AML pathway for one patient.
Using the pathway ranking method described in Section 2.8,
we additionally prefer drugs obtained from the top ranked
pathways that contain our gene target.

2.7 Cancer Specific Analysis

Without context, calling variants within a patient’s genome
is not enough to identify the most relevant mutations in a
patient. Variants provided by commercial solutions such as
Complete Genomics or Illumina, Inc., or by open-source
pipelines such as VarScan2 [30], do not solve the problem of
ranking the most important genic mutations. Rather, they
rank the most confident of such mutations, and in most
cases an overwhelming number of potential driver muta-
tions are identified. Solving this problem requires us to per-
form a few steps in our pipeline that are specific to each
type of cancer, in order to provide a context in which to
identify the most affected genes for each patient.

2.7.1 Curated Gene Lists

To narrow down our variants to those contained within
genes known to be involved in a certain type of cancer, gene
lists are automatically curated from three primary sources.

These three sources are (1) NCBI MEDLINE abstract and
titles, (2) NCBI GeneRIF [31], and (3) NCBI Entrez queries.

For the first source, we perform text pattern matching on
the corpus of abstracts and titles from NCBI Medline, using
the UCSC hg19 genome annotation tables for a list of all
known gene symbols in our search. Using the PubMed API,
we retrieve a list of articles matching a specific type of can-
cer and extract all gene symbols in the titles and abstracts of
these articles. Secondly, we cross reference the same articles
with NCBI GeneRIF in order to find all genes that have been
manually annotated for these articles. NCBI GeneRIF con-
tains 800,000 gene symbols annotated to MEDLINE articles,
477,417 of which are for Homo sapiens. Thirdly, the NCBI
Entrez web API is used to return a list of genes for any
query related to each type of cancer. The final sizes of each
of our curated gene list for each type of cancer are shown in
Supplementary Table 3, available online.

Additionally, lists of genes which are known to be
affected in or related to cancer are pulled from three public
sources, in order to create a list of genes commonly impli-
cated in a wide range of cancers. These sources, along with
the number of symbols in each, are: (1) The Bushman Lab
Cancer Gene List [32] (2,032), (2) The Cancer Gene Census
[33] (489), and (3) Network of Cancer Genes 3.0 [34] (1,495).
In total, 450 genes symbols were found in all three sources,
across the 2,916 genes present in at least one source.

2.7.2 Microarray Data Sets

Microarray datasets are automatically obtained from the
Gene Expression Omnibus (GEO) [35] for the cancer types
of our pediatric patient samples using the cancer type as a
query. Control datasets and samples for each cancer type
are also obtained if available. These control datasets are
used in lieu of proper control sample RNA-seq datasets for
each patient, which are not realistically obtainable for the
pediatric patients being sequenced. We use these control
datasets in the methods below to complement the RNA-seq
differential analysis in such cases. The datasets, platforms,
and number of samples per type of cancer are shown in
Supplementary Tables 2 and 5, available online.

Fig. 4. CHOC36 drug-target edges in AML pathway (limited to variants).
Circles denote proteins and hexagons denote drugs. Filled circles denote
affected proteins, with identified potentially therapeutic drugs circled.

Fig. 3. Portion of KEGG AML pathway for patient CHOC36. Dark boxes
indicate proteins with clinically associated variations.
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2.7.3 Microarray Differential Analysis

Following standard microarray practices, each microarray
dataset obtained is background normalized using the MAS5
algorithm [36]. Using platform annotations provided by
GEO, probes are matched to gene symbols, and for cases
where there are multiple probes per gene symbol, the probe
with the maximum expression is retained. In the cases
where raw expression is available, expression values are
log-normalized to correct for the variance-mean bias com-
monly observed in microarray data. For any preprocessed
datasets where raw microarray data is not available, data is
log normalized if it was not already, to keep scales
consistent.

After all datasets for all types of cancer present within
our patients are preprocessed, gene symbols are then
matched across all microarray samples. After removing
samples and symbols that are missing more than 75 percent
of data, 17,011 unique gene symbols remain, for which any
missing data is imputed using k-nearest neighbors. Lastly,
quantile normalization is used to normalize between all
arrays and the distribution of expression values across
tumor types is shown in Supplementary Fig. 6, available
online. This preprocessing step is performed again if any
additional patients with distinct types of cancer are
obtained.

To test for differential transcripts, CyberT [11], [12] with
a Benjamini-Hochberg multiple test corrected p-value cutoff
of 0.05 is performed on a number of different contrasts uti-
lizing the microarray data. In particular, when control sam-
ples exist for a type of cancer, CyberT is used to identify
differentially expressed transcripts specific to that type of
cancer which can be used to prioritize (1) variants within
those transcripts or (2) those transcripts that were also iden-
tified by the RNA-seq analysis differential analysis in
patients afflicted with that cancer.

CyberT is additionally used to perform the exact same
analysis as is done using the pooled cancer patient RNA-
seq samples described in Section 2.5.1. In lieu of the patient
samples, the median expression values for each gene sym-
bol are used across all microarray samples for that type of
cancer. The median microarray sample for each patient is
tested for differential expression against the set of median
microarray samples derived for each other patient as was
done for the RNA-seq data. Additionally, in the types of
cancer where control data is available, we perform the same
differential analysis for all patients with that type of cancer
using the median control microarray data instead of the
median tumor microarray data. Lastly, using all of the
tumor microarray data for all types of cancer, we use
CyberT to identify transcripts that are commonly expressed,
or unexpressed, in cancer. In summary, we define the fol-
lowing gene lists using microarray data:

1) GEO Control vs GEO Cancer (if applicable) for each
tumor type

2) GEO Control vs GEO Matched Cancer (if applicable)
for each tumor type

3) GEO Cancer vs GEO Matched Cancers for each
tumor type

4) Common in GEO Cancers Expressed
5) Common in GEO Cancers Unexpressed.

2.7.4 Gene List Overlaps

When we attempt to prioritize RNA-seq differential genes
based on the expression or lack of expression of transcripts,
we observe no clear separation between transcripts with
variants and transcripts without variants. Instead, we must
make use of the list of genes identified from our differential
analysis of the microarray data for each type of cancer, in
addition to gene lists curated from literature for each type
of cancer, to prioritize transcripts identified by the RNA-seq
differential analysis in patients with each type of cancer.

We first investigated the significance of various overlaps
using a Fisher’s Exact test to identify the overlaps with the
most significant enrichment for small variants within
patients. We observe significant (P < 0.05) overlap of three
of the cancer specific gene lists with affected genes within
patients. The most informative, and significant, are the list
of genes curated from literature, the differential transcripts
identified using microarray data, and the transcripts with
high expression compared to other patients that also fall
within the microarray differential transcripts.

The significance of the last list above prompted us to pri-
ortize our RNA-seq differential transcripts using a similar
gene list overlap approach, since this overlap was found to
enrich for transcripts with small variants—which likely
influences the expression of those affected genes. For gene
lists (2) and (3) from our microarray analysis in Section 2.7.3,
we can identify tissue-specific genes and genes we would
expect to change, respectively, in the RNA-seq analysis
against the pooled patient samples for patients with that
type of cancer. These help further prioritize the differential
RNA-seq transcripts into HIGH, MEDIUM, and LOW gene lists
based on overlaps with microarray gene lists (1), (3), and (2),
respectively, where the HIGH category corresponds to the
same overlapwe found a significant enrichment of small var-
iants in. The average size of these lists are summarized in
Table 2.

2.8 Reporting

A novel approach to reporting is developed in order to sift
through the still many affected genes found in each patient,
despite having removed variations present in the germline
control samples. When looking at the overlap with the 487
KEGG and NCI pathways in our network analysis, on aver-
age 342 pathways had at least one small variation per
patient. To reduce this to a more clinically relevant and
manageable number of affected pathways, it is necessary to
limit pathways based on their importance in a each specific
type of cancer. After doing so, we build networks for the
pathways most affected in each patient in order to visualize
the interactions between genes with variations within the
same pathway and to identify potential drug candidates.

In order to filter genes with variations down to the ones
most probable to contain driver mutations, we develop a
ranking method for both pathways and genes based on
enrichment scores. Using the list of curated genes
described previously—those specific to a type of cancer—
we use a Fisher’s exact test to determine the statistical sig-
nificance of the overlap between the curated gene list and
the list of genes in each pathway. Pathways are then
ranked based on this significance value. This ranking is
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specific to each type of cancer but not specific to any indi-
vidual patient. Additionally, for each patient, the ranked
pathways for their type of cancer are filtered for only
those pathways containing at least one genetic variation
(small or large) within the curated list of genes for that
cancer. In most patients, this reduces the average affected
pathways from 342 down to less than 50 affected path-
ways. Specifically, we compute the pathway enrichment
p-value as the probability of observing the overlap
between the pathway gene list and our curated gene lists,
assuming 39,131 genes in the human genome:

ScoreðPathwayÞ ¼ �log10ðpathway enrichment p-valueÞ:

Similarly, for each patient, we compute an enrich-
ment score for any single gene based on the list of var-
iants which are affecting that gene. The enrichment
score of each individual type of variant listed in Table 2
(under the small variations, large variations, and gene
expression columns) is determined using the overlap of
variants of a particular type within the table with the list
of curated genes for that patient’s cancer, calculated using
a Fisher’s Exact test:

ScoreðGeneÞ ¼
X

� log10ðvariant enrichment p-valueÞ:

To justify this approach, assuming the curated lists
reflect the genes we expect to be mutated in patients with
this type of cancer, we should observe more variations
within this list than in a random gene list of the same size.
As remarked on in Section 2.7.4, we find this to be the case
across patients. Types of genetic variations that score
higher will be ones that contain a larger number of affected
genes within the curated list, and therefore we might
expect our driver mutations to be carried by the same cate-
gories of mutations in those genes, and others, within the
same patient.

To assess the robustness of our gene ranking method to
variations in the previously curated gene lists, we used a
leave-one-out approach. After the initial ranking of genes
based on the initial curated gene list for each patient, we
removed each of the top 50 curated genes from the
curated gene list and reranked that gene in order to mea-
sure its change in rank. We found that across all patients,
81 percent of the top 50 genes for each patient moved less
than 25 ranks, with a median change in rank of 3 for the
top 25 curated genes. Further, within the top 10 genes for
each patient we observed a median change in rank of only
1. This suggests that the top ranked curated genes are
influenced less by their own contribution to the ranking
score than those further down the list and that the ranking
of genes is relatively stable with respect to the composi-
tion of the curated gene list.

Lastly, using the list of 450 symbols common to most can-
cers as was defined in Section 2.7.1, we look for affected
genes within this more general list that rank highly but are
not contained within the curated list of genes. These are
genes that have been implicated in any type of cancer.
Therefore, any affected genes within this list warrant further
consideration aside from those in our curated gene lists for
each type of cancer. Our final reports are in the form of

network views of the top ranked pathways, along with
tables of the top ranked genes along with their associated
pathways, drug candidates, and expression profiles.

3 INTERESTING FINDINGS

3.1 Patient CHOC23 Acute Myeloid Leukemia (AML)

To demonstrate the effectiveness of our pipeline in identify-
ing genes affected by likely driver mutations, we explore
the ranking observed for one of our patients with acute
myeloid leukemia, CHOC23. Our objective is to identify the
affected genes within the tumor genome of CHOC23 that
most directly relate to AML. We employed the ranking
method described previously to rank the pathways that
would be of most interest in AML, the results of which are
presented in Table 3. The top three pathways for this patient
were PI3K-Akt signaling pathway, Chronic myeloid leuke-
mia, and Acute myeloid leukemia. This initial ranking of
pathways is not specific to this patient and is shared with
all AML patients. As we would expect, the leukemia path-
ways for CML and AML rank near the top.

The gene ranking method also performs well for this
patient, and in contrast to the pathway ranking, is spe-
cific to this patient. As shown in Table 4, this method
ranks MLL3 the highest. The score for MLL3 is calculated
as follows:

ScoreðMLL3Þ ¼ ScoreðFusionÞ þ ScoreðDeletionÞ
þ ScoreðLowerCNÞ þ ScoreðMissenseÞ

¼ 0:5767þ 1:5911þ 0:6887þ 0:6484

¼ 3:51:

The higher value for Score(Deletion) reflects the fact that,
in this patient, deletions are more enriched within the
curated list of genes for AML than any of the other varia-
tions. For the majority of patients, the genetic variations that
score highest are: (1) microarray differential genes,
(2) fusions, (3) deletions, and (4) genes with lower RPKM
compared to other patients. The fact that this gene ranks at
the top is of no small consequence, it is one of the few iden-
tified Mitelman fusions in all of the patients. The other
mutations identified provide further evidence that MLL3 is
significantly altered in this patient, and contribute to it
being the highest ranked.

TABLE 3
Top 10 Ranked Pathways for CHOC23 (AML)

Pathway Description Score Size Curated
Overlap

Curated
Affected

PI3K-Akt signaling pathway 7.07 881 35 3
Chronic myeloid leukemia 5.66 179 13 1
Acute myeloid leukemia 4.19 180 11 3
Signaling events mediated
by HGFR (c-Met) 3.81 80 7 1
Pathways in cancer 3.09 890 26 3
Hepatitis B 2.94 374 14 1
Small cell lung cancer 2.93 215 10 2
Pancreatic cancer 2.73 191 9 1
ATR signaling pathway 2.63 39 4 1
Toll-like receptor signaling 2.64 236 10 1
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We make use of our automated method for drug recom-
mendations to address the problem of a lack of directly
druggable targets. For this patient, none of the top 10 rank-
ing curated genes have any drugs that directly target them,
making therapeutic recommendations for these genes
problematic. To address this, we search over each of the
top ranked genes and identify which of the top ranked
pathways, if any, that gene is contained within. If one or
more pathways exists, we perform a graph-based search
for the nearest best drug candidates, as described earlier in
Section 2.6.1.

For this patient, the first such targets with drug candi-
dates are TCF7L1 and NCOR2. In the absense of directly
druggable targets, we find that TCF7L1 has two potential
drug candidates. The first of which, Staurosporin—a potent
protein kinase inhibitor—is identified in the Prostate Cancer
pathway through TCF7L10s interaction with CTNNB1, which
interacts with Staurosporin0s direct target GSK3B. Interest-
ingly, we find a number of additional targets for Stauro-
sporin in the AML pathway (shown in Fig. 4 for a different
AML patient)—AKT2, AKT3, KIK3CG, and PIM1, all con-
taining genetic variants within this patient. The second drug
candidate, Vorinostat, a HDAC1 inhibitor, is identified in the
Regulation of b-catenin pathway, again through TCF7L1’s
interaction with CTNNB1, which interacts with HDAC1.

We also identify Vorinostat as the best drug candidate for
our next highest ranked gene, NCOR2, through an entirely
different pathway, the Notch signalling pathway where
HDAC1 and NCOR2 have a protein-protein interaction.
This drug has been in Phase II clinical trials for AML
patients, and while it was not shown to be effective alone, it
shows promise as a potential drug for high-risk patients in
conjunction with other drugs [37]. It may be the case that
only a subset of patients, such as this one, would respond to
this drug. In the absence of any direct drug candidates in
the top ranked genes, we are able to identify reasonable
drug candidates through this pathway-based approach.

3.2 Patient CHOC33 (Neuroblastoma)

Another interesting case is patient CHOC33, a neuroblas-
toma patient. Neuroblastoma is a tumor derived from neural
crest cells from the sympathetic nervous system. Using this
patient as an example, we explore how we relate the gene
expression data to the top ranked genetic variations found.

Our pipeline focuses on the curated list of genes associated
with neuroblastoma (505 genes), for which the top ranking in
this patient are as follows: PTPRD (2.68), PARK2 (2.44), DCC
(2.34), and ALK (2.22). All of these genes contain genetic var-
iants within their coding sequences.

Our second ranked gene, PARK2, contains a deletion in
the first intron as well as an exonic region of higher copy
number, as shown in Fig. 5, which contributes to its high
rank. PARK2 is also identified as having a relatively higher
expression in this patient compared to others (Fig. 6). The
gene expression profile provides strong evidence that
PARK2 gene expression is being altered as a result of its
genetic variants. This lends credibility to the called genetic
variants, as well as informing on the direction of change of
PARK2 expression in this patient’s tumor. Additionally, by
overlapping Pfam predicted domains for PARK2, we identi-
fied a portion of the ubiqitin domain that confers PARK2 a
role in the ubiqitin-ligase pathway (Fig. 5). This further sug-
gests that PARK2 is functioning in tumor progression in
this patient. Recently, PARK2 has been shown to have an
emerging role in cancer [38].

3.3 Patients CHOC36 and CHOC03 (AML)

We perform a meta analysis on our two primary AML
patients, CHOC36 and CHOC03, in which we attempt to
find genes that had common variations: either genetic or in
their expression. One such gene is EPOR, which stood out
as having significantly higher expression in both patients
compared to other patients’ tumors (Fig. 7). Despite a
known higher expression in healthy bone marrow as com-
pared to other tissues (data not shown), the level of EPOR
expression observed for these two patients is not observed

Fig. 5. UCSC genome browser displaying genetic variations in PARK2
transcripts in patient CHOC33. Zoomed in region highlights features of
exon 2 within the copy number variant, which includes a functional ubiq-
uitin domain identified by Pfam.

TABLE 4
Top 10 Curated Gene Ranking for CHOC23 (AML)

Gene Score RPKM Variants (counts)

MLL3 3.51 0.71703 fusion (6); deletion (1);
lowerCN (13); missense (1)

ERCC1 2.92 0.8563 under expr. LOW; inversion (3)
NCOR1 2.78 0.78821 inversion (3); deletion (1);

higherCN (3)
TCF7L1 2.55 0.42467 deletion (1); unique inframe (1)
NCOR2 2.51 0.76177 under expr. MEDIUM; deletion (6)
HPR 2.24 0.41816 deletion (1); missense (1)
LEPR 2.24 0.30763 deletion (12); missense (1)
NRAS 2.16 0.46848 flagged missense (1)
HSPA1A 1.70 0.55796 under expr. MEDIUM; tandemdup (1)
MUT 1.65 0.37452 tandemdup (1); missense (1); loh (1)
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in other patients for which the RNA-seq data was also
obtained from the patient’s bone marrow.

EPOR, known as erythropoietin receptor, is involved in
the Jak-STAT signalling pathway, which rankswithin the top
five pathways for both patients. Additionally, for CHOC03,
the top 5 percent most highly differentially expressed genes
were enriched within the list of curated genes for AML, indi-
cating a strong increase in expression in a subset of curated
genes for this patient as compared to other patients. This not
only has the effect of ranking EPOR highly (#19 ranked
curated gene, #1 ranked curated gene within a top 25 ranked
pathway), but also of highlighting specific pathways that are
over-expressed, mainly the PI3K-Akt and Jak-STAT signal-
ing pathways. The Jak-STAT signaling pathway for CHOC03
contains high expression variants in a number of highly con-
nected genes, namely: STAT5A, EPOR, PTPN6, IL6ST,
CSF2RF, JAK3, TPOR, and PIM1 all show much higher
expression than other patients. These variants are readily vis-
ible using the network approach (network not shown).

While not differentially expressed between our curated
AML control vs. tumor microarray samples (P ¼ 0.6354),
it has been shown previously that in approximately 60
percent of AML patients, EPOR is unexpressed [39].
Additionally, remission times for patients with higher
EPOR expression is significantly lower compared to those
without EPOR expression [40] which is likely the case for
these patients since all of the patients sequenced are after
recurrence of the primary tumor. Additionally, in some
cases patients with AML are being treated with erythro-
poiesis-stimulating agents, but it is believed that this
could cause proliferation in a subset of AML patients
with EPOR expression [39], [41], suggesting that these
AML patients fall into a specific subtype of AML, differ-
entiating them from our secondary AML patients
CHOC23 and CHOC26, for which we do not observe an
increase in EPOR expression.

Additionally, we investigated what transcription factors
were enriched in each of our AML patients based on the loca-
tion of predicted binding sites upstream of our differential

gene lists (see Section 2.5.2). Further validating the impor-
tance of EPOR in these patients, we identify a significant
enrichment for transcription factor LMO2 in our list of
over-expressed transcripts (rank #3 for CHOC03; p-value ¼
4.5E-5). LMO2 and three out of its 25 targets predicted by
MotifMap (EPOR, ANK1, and TRIM10) all have high expres-
sion in this patient (Fig. 7). LMO2 has been previously found
to be involved in AML [42], and its high expression, particu-
larly in CHOC03, comparedwith other patients is further evi-
dence of a subtype ofAMLwithin our primaryAMLpatients.

4 DISCUSSION

What we have developed is a complete genomic analysis
pipeline starting from raw sequencing reads leading to clin-
ically interpretable results in the form of short (1-100)
ranked lists of the most important affected genes. In prac-
tice, the turn around time is a day for processing of the raw
sequencing reads and generating the final reports—for
patients with cancer types for which curated gene lists have
already been obtained.

Our pipeline adheres to the five steps of a cancer analysis
pipeline outlined by Valencia and Hidalgo [43]: 1. Genome
analysis: We analyze DNA-seq and RNA-seq data from
commercial vendors using a uniformed format for calling
variants. 2. Consequences of mutations and genomics alter-
ations: For small variations we identify the affect on protein
sequence in addition to protein secondary structure, solvent
accessibility, and known protein domains. 3. Network level
analysis: We make use of NCI and KEGG pathways to iden-
tify the most relevant pathways for each type of cancer. 4.

Fig. 7. Enriched transcription factor LMO2, along with three of 25 of its
predicted targets (top; dark circles for genes with high expression), has
high expression compared to other patients for both of our primary AML
patients (bottom; primary AML patients circled). One of these targets,
EPOR, was identified as being to be significantly higher in both primary
AML patients and not others (middle).

Fig. 6. PARK2 gene expression in patient tumors (top) and BioGPS nor-
mal tissue gene expression in tumor-matched tissues (bottom), where
patient CHOC33 is the first bar on far left. We observe higher expression
for PARK2 in CHOC33 as compared to other patients, in contrast to a
relatively constant gene expression across healthy tissues.

836 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014



Drug: We make use of the ranked pathways and genes to
identify potential drug candidates for each patient. And
lastly, 5. Collaborative interfaces: We integrate multiple
sources of information into a network view that includes
regulatory information across all patients and tissue types
for exploring the interactions among affected genes and
potential drugs.

In contrast to other published pipelines [44], our pipeline
successfully integrates expression data into our ranking, in
addition to giving priority to mutated variant transcription
factors. A recent opinion paper [45], highlights the impor-
tance of the integration of multiple-omic datasets, which we
have demonstrated.

Most importantly, after initially obtaining the datasets
used in our integrative approach, our pipeline is automated
up to and including the identification of potential drug can-
didates, and handles newly diagnosed patient with cancer
types we have already seen without any intervention. This
is an important aspect when working with pediatric cancer
patients where the time from diagnosis to treatment is criti-
cal. In fact, the main reason multiple sequencing technolo-
gies were required for this project was to balance the turn
around time of the sequencing technology and the cost of
the sequencing technology on a per patient basis. Being able
to return clinically relevant results immediately after
sequencing results are obtained is an important aspect of a
complete genomics analysis pipeline such as this, and will
be critical of any personalized genomics pipeline that is to
have widespread adoption.

5 CONCLUSION

By combining RNA-seq, DNA-seq, and microarray data, in
addition to numerous sources of annotations on the refer-
ence genome, we were able to identify likely driver muta-
tions in pediatric cancers. We found that such an integrative
approach is essential, and information from gene expression
data in particular, can complement a search for genetic var-
iants, making results more robust. Typically, we observe
many mutations within the top ranked pathways, indicating
that multiple genes are likely affected in a tumor cell in
order to effectively knockout critical pathways, as shown to
be required in cancer [15], [16].

In some cases, gene expression data alone can stratify
patients with different subtypes of cancer, such as was the
case for our primary AML samples and EPOR expression.
In other cases, gene expression data was found to agree
with the DNA-seq variants, giving stronger evidence that
this particular variant could be considered a driver muta-
tion. The gene lists derived from microarray control vs.
tumor data (when available) are found to overlap well with
the set of genes affected by variants (P ¼ 1E-15 for AML
patient CHOC03). These curated lists allow for screening of
variants within a set of the most important genes and path-
ways, by making use of multiple sources of patient data.

We found that using integrative approaches in the form
of gene and drug networks along with gene expression
profiles helped improve the interpretation of genetic var-
iants. Our novel ranking methods quickly identify the
most important mutations for the cancer specific to each
patient and we showed in a few example patients that the

most highly ranked genes and pathways had interesting
results that agreed with literature. What we have devel-
oped thus far is a general genomic pipeline, which we
demonstrated a use for in identifying likely driver muta-
tions in pediatric cancer. This same pipeline can be readily
adapted to the study of any genetic variants associated
with any trait or disease of interest (e.g., the “driver” muta-
tions of schizophrenia).

During the course of the development of our pipeline we
observed specific biases in some of the results depending on
the sequencing platform used, necessitating in some cases
correcting for these biases, as is the case for a few fusions
that appeared in multiple Illumina patients that at first
appeared clinically relevant. Such technology biases are an
aspect of our future work in this pipeline, and with more
patients we will be able to identify the full scope of such
biases and correct them in a systematic way. Given the
advantage of the network representation for interpreting
results and identifying relationships between variations, we
also see the advantage in implementing some network-
based inference to complement our enrichment-based
approach, in order to increase the quality of the rankings of
pathways and likely driver mutations.

ACKNOWLEDGMENTS

Michael Zeller and Christophe N. Magnan contributed
equally to this work. This work was supported by a grant
from the Hyundai Foundation to L.S. and grants NIH
LM01, NIH NLM T15 LM07, and US National Science Foun-
dation (NSF) IIS-0513376 to PB. The authors acknowledge
also the support of the CHOC, the UCI Institute for Geno-
mics and Bioinformatics, the UCI Genomics High-Through-
put Facility, and a hardware donation by NVIDIA.
Additional support of their computational infrastructure
was provided by Jordan Hayes and Yuzo Kanomata.

REFERENCES

[1] (2013, Sep.). The cancer genome atlas homepage [Online].
Available: http://cancergenome.nih.gov/

[2] X. Xie, P. Rigor, and P. Baldi, “MotifMap: A human genome-wide
map of candidate regulatory motif sites,” Bioinformatics, vol. 25,
no. 2, pp. 167–174, Jan. 2009.

[3] K. Daily, V. Patel, P. Rigor, X. Xie, and P. Baldi, “MotifMap: Inte-
grative genome-wide maps of regulatory motif sites for model
species,” BMC Bioinformatics, vol. 12, no. 1, p. 495, 2011.

[4] S. A. Forbes, N. Bindal, S. Bamford, C. Cole, C. Y. Kok, D. Beare,
M. Jia, R. Shepherd, K. Leung, A. Menzies, J. W. Teague, P. J.
Campbell, M. R. Stratton, and P. A. Futreal, “Cosmic: Mining com-
plete cancer genomes in the catalogue of somatic mutations in can-
cer,” Nucleic Acids Res., vol. 39, no. suppl. 1, pp. D945–D950, 2011.

[5] A. G. Knudson. (1971, Apr.). Mutation and cancer: Statistical
study of retinoblastoma. Proc. Nat. Acad. Sci. USA [Online]. 8(4),
pp. 820–823. Available: http://www.pnas.org/content/68/4/
820.abstract

[6] L. R. Meyer, A. S. Zweig, A. S. Hinrichs, D. Karolchik, R. M.
Kuhn, M. Wong, C. A. Sloan, K. R. Rosenbloom, G. Roe, B.
Rhead, B. J. Raney, A. Pohl, V. S. Malladi, C. H. Li, B. T. Lee, K.
Learned, V. Kirkup, F. Hsu, S. Heitner, R. A. Harte, M. Haeussler,
L. Guruvadoo, M. Goldman, B. M. Giardine, P. A. Fujita, T. R.
Dreszer, M. Diekhans, M. S. Cline, H. Clawson, G. P. Barber, D.
Haussler, and W. J. Kent, “The UCSC Genome Browser database:
extensions and updates 2013,” Nucleic Acids Res., vol. 41, no.
database issue, pp. D64–D69, Jan. 2013.

[7] J. Cheng, A. Z. Randall,M. J. Sweredoski, and P. Baldi, “SCRATCH:
A protein structure and structural feature prediction server,”
Nucleic Acids Res., vol. 33, no. suppl. 2, pp.W72–W76, Jul. 2005.

ZELLER ET AL.: A GENOMIC ANALYSIS PIPELINE AND ITS APPLICATION TO PEDIATRIC CANCERS 837



[8] C. N. Magnan and P. Baldi, “SSpro/ACCpro 5: almost perfect
prediction of protein secondary structure and relative solvent
accessibility using profiles, machine learning and structural
similarity,” Bioinformatics, 2014.

[9] M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C.
Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A.
Heger, L. Holm, E. L. L. Sonnhammer, S. R. Eddy, A. Bateman,
and R. D. Finn, “The Pfam protein families database,” Nucleic
Acids Res., vol. 40, no. D1, pp. D290–D301, Jan. 2012.

[10] F. Mitelman, B. Johansson, and F. Mertens, Eds. (2013). Mitelman
database of chromosome aberrations and gene fusions in cancer.
[Online]. Available: http://cgap.nci.nih.gov/Chromosomes/
Mitelman

[11] P. Baldi and A. D. Long, “A Bayesian framework for the analysis
of microarray expression data: Regularized t-test and statistical
inferences of gene changes,” Bioinformatics, vol. 17, no. 6, pp. 509–
519, Jun. 2001.

[12] M. A. Kayala and P. Baldi, “Cyber-T web server: Differential anal-
ysis of high-throughput data,” Nucleic Acids Res., vol. 40, no. web
server issue, pp. W553–W559, Jul. 2012.

[13] A. I. Su, T. Wiltshire, S. Batalov, H. Lapp, K. A. Ching, D. Block, J.
Zhang, R. Soden, M. Hayakawa, G. Kreiman, M. P. Cooke, J. R.
Walker, and J. B. Hogenesch, “A gene atlas of the mouse and
human protein-encoding transcriptomes,” Proc. Nat. Acad. Sci.
USA, vol. 101, no. 16, pp. 6062–6067, Apr. 2004.

[14] C. Wu, I. Macleod, and A. I. Su, “BioGPS and MyGene.info:
Organizing online, gene-centric information,” Nucleic Acids Res.,
vol. 41, no. database issue, pp. D561–D565, Jan. 2013.

[15] D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell,
vol. 100, no. 1, pp. 57–70, Jan. 2000.

[16] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next
generation,” Cell, vol. 144, no. 5, pp. 646–674, Mar. 2011.

[17] C. T. Lopes, M. Franz, F. Kazi, S. L. Donaldson, Q. Morris, and G.
D. Bader, “Cytoscape web: An interactive web-based network
browser,” Bioinformatics, vol. 26, no. 18, pp. 2347–2348, Sep. 2010.

[18] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori,
“The KEGG resource for deciphering the genome,” Nucleic Acids
Res., vol. 32, no. suppl. 1, pp. D277–D280, Jan. 2004.

[19] C. F. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day, T.
Hannay, and K. H. Buetow, “PID: The pathway interaction
database,” Nucleic Acids Res., vol. 37, no. database issue,
pp. D674–D679, Jan. 2009.

[20] C. Stark, B.-J. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz,
and M. Tyers, “BioGRID: A general repository for interaction
datasets,” Nucleic Acids Res., vol. 34, no. database issue, pp. D535–
D539, Jan. 2006.

[21] C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K.
Banco, C. Mak, V. Neveu, Y. Djoumbou, R. Eisner, A. C. Guo, and
D. S. Wishart, “DrugBank 3.0: A comprehensive resource for
‘omics’ research on drugs,”Nucleic Acids Res., vol. 39, no. database
issue, pp. D1035–1041, Jan. 2011.

[22] D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D.
Tzur, B. Gautam, and M. Hassanali, “DrugBank: A knowledge-
base for drugs, drug actions and drug targets,” Nucleic Acids Res.,
vol. 36, no. database issue, pp. D901–906, Jan. 2008.

[23] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali,
P. Stothard, Z. Chang, and J. Woolsey, “DrugBank: A compre-
hensive resource for in silico drug discovery and exploration,”
Nucleic Acids Res., vol. 34, no. database issue, pp. D668–672,
Jan. 2006.

[24] T. Liu, Y. Lin, X. Wen, R. N. Jorissen, and M. K. Gilson,
“BindingDB: A web-accessible database of experimentally deter-
mined protein-ligand binding affinities,” Nucleic Acids Res.,
vol. 35, no. database issue, pp. 198–201, Jan. 2007.

[25] M. Whirl-Carrillo, E. M. McDonagh, J. M. Hebert, L. Gong,
K. Sangkuhl, C. F. Thorn, R. B. Altman, and T. E. Klein,
“Pharmacogenomics knowledge for personalized medicine,”
Clin. Pharmacol. Therapeutics, vol. 92, no. 4, pp. 414–417, Oct.
2012.

[26] F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, and J. Morissette,
“Bio2rdf: Towards a mashup to build bioinformatics knowledge
systems,” J. Biomed. Inf., vol. 41, no. 5, pp. 706–716, 2008.

[27] A. Callahan, J. Cruz-Toledo, and M. Dumontier. (2013). Ontol-
ogy-based querying with bio2rdf’s linked open data. J. Biomed.
Semantics [Online]. 4 (suppl. 1), p. S1. Available: http://www.
jbiomedsem.com/content/4/S1/S1

[28] B. Chen, X. Dong, D. Jiao, H. Wang, Q. Zhu, Y. Ding, and D. Wild,.
(2010). Chem2bio2rdf: A semantic framework for linking and data
mining chemogenomic and systems chemical biology data. BMC
Bioinformatics [Online]. 11 (1), p. 255. Available: http://www.bio-
medcentral.com/1471-2105/11/255

[29] M. Samwald, A. Jentzsch, C. Bouton, C. Kallesoe, E. Willighagen, J.
Hajagos, M. Marshall, E. Prud’hommeaux, O. Hassanzadeh, E.
Pichler, and S. Stephens. (2011). Linked open drug data for phar-
maceutical research and development. J. Cheminformatics [Online]
3(1), p. 19. Available: http://www.jcheminf.com/content/3/1/19

[30] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan, L.
Lin, C. A. Miller, E. R. Mardis, L. Ding, and R. K. Wilson,
“VarScan 2: Somatic mutation and copy number alteration discov-
ery in cancer by exome sequencing,” Genome Res., vol. 22, no. 3,
pp. 568–576, Mar. 2012.

[31] J. A. Mitchell, A. R. Aronson, J. G. Mork, L. C. Folk, S. M.
Humphrey, and J. M. Ward. (2003). Gene indexing: characteri-
zation and analysis of NLM’s GeneRIFs. Proc. AMIA Annu.
Symp., pp. 460–464 [Online]. Available: http://www.ncbi.nlm.
nih.gov/pmc/articles/PMC1480312/

[32] F. Bushman. (2013, Sep.) Bushman lab: Genelists. [Online]. Avail-
able: http://www.bushmanlab.org/links/genelists

[33] P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R.
Wooster, N. Rahman, andM. R. Stratton, “A census of human can-
cer genes,”Nat. Rev. Cancer, vol. 4, no. 3, pp. 177–183, Mar. 2004.

[34] M. D’Antonio, V. Pendino, S. Sinha, and F. D. Ciccarelli, “Network
of cancer genes (NCG 3.0): Integration and analysis of genetic and
network properties of cancer genes,” Nucleic Acids Res., vol. 40,
database issue D1, pp. D978–D983, Jan. 2012.

[35] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M.
Tomashevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M.
Holko, A. Yefanov, H. Lee, N. Zhang, C. L. Robertson, N. Serova,
S. Davis, and A. Soboleva, “NCBI GEO: Archive for functional
genomics data sets update,” Nucleic Acids Res., vol. 41, no. D1,
pp. D991–D995, Jan. 2013.

[36] S. Pepper, E. Saunders, L. Edwards, C. Wilson, and C. Miller, “The
utility of MAS5 expression summary and detection call algo-
rithms,” BMC Bioinformatics, vol. 8, no. 1, p. 273, 2007.

[37] E. W. Schaefer, A. Loaiza-Bonilla, M. Juckett, J. F. DiPersio, V. Roy,
J. Slack, W. Wu, K. Laumann, I. Espinoza-Delgado, S. D. Gore, and
Mayo P2C Phase II Consortium. (2009, Oct.). A phase 2 study of
vorinostat in acute myeloid leukemia. Haematologica [Online]. 94
(10), pp. 1375–1382, Oct. 2009. Available: http://view.ncbi.nlm.
nih.gov/pubmed/19794082

[38] L. Xu, D.-c. Lin, D. Yin, and Koeffler,, “An emerging role of
PARK2 in cancer,” J. Mol. Med., vol. 92, no. 1, pp. 31–42, 2014.

[39] G.-L. L. Cheng, W. Wang, H.-Y. Y. Wang, and Z.-G. G. Cui. (2011,
Feb.). Expression of EPOR on acute leukemia cells and its clinical
significance. J. Exp. Hematol./Chinese Assoc. Pathophysiol. [Online].
19(1), pp. 15–18. Available: http://view.ncbi.nlm.nih.gov/
pubmed/21362213

[40] A. Takeshita, K. Shinjo, K. Naito, K. Ohnishi, M. Higuchi, and
R. Ohno, “Erythropoietin receptor in myelodysplastic syndrome
and leukemia,” Leukemia Lymphoma, vol. 43, no. 2, pp. 261–264,
Feb. 2002.

[41] M. Feng and Y.-C. C. Li, “Expression of erythropoietin receptor in
leukemia cells and relation of erythropoietin level with leukemic
anemia,” J. Experimental Hematol./Chinese Assoc. Pathophysiol.,
vol. 16, no. 6, pp. 1265–1270, Dec. 2008.

[42] U. Cobanoglu, M. Sonmez, H. M. M. Ozbas, N. Erkut, and G. Can.
(2010, Jun.). The expression of LMO2 protein in acute B-cell and
myeloid leukemia,” Hematology [Online]. 15(3), pp. 132–134.
Available: http://view.ncbi.nlm.nih.gov/pubmed/20557670

[43] A. Valencia andM. Hidalgo, “Getting personalized cancer genome
analysis into the clinic: The challenges in bioinformatics,” Genome
Med., vol. 4, no. 7, p. 61, Jul. 2012.

[44] N. D. Dees, Q. Zhang, C. Kandoth, M. C. Wendl, W. Schierding, D.
C. Koboldt, T. B.Mooney,M. B. Callaway, D. Dooling, E. R.Mardis,
R. K. Wilson, and L. Ding, “MuSiC: Identifying mutational signifi-
cance in cancer genomes,” Genome Res., vol. 22, no. 8, pp. 1589–
1598, Jul. 2012.

[45] E. R. Mardis, “Genome sequencing and cancer,” Current Opinion
Genetics Develop., vol. 22, no. 3, pp. 245–250, Jun. 2012.

838 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2014



Michael Zeller received the BS degrees in com-
puter science and in biomedical engineering
from Washington University in St. Louis in 2008.
He is currently working toward the PhD degree
at the University of California, Irvine, under Prof.
Pierre Baldi in the Computer Science depart-
ment. His research focuses on machine learning
using gene expression data and high-throughput
sequencing data analysis.

Christophe N. Magnan received the PhD
degree from the University of Provence, France,
in 2007. He is currently an assistant project scien-
tist at the Institute for Genomics and Bioinformat-
ics, University of California, Irvine. His work
focuses on machine learning applications to pro-
teomics and genomic sequencing data analysis.

Vishal R. Patel received the BTech degree in
industrial biotechnology from Anna University,
Chennai, India, in 2009 and the PhD degree in
computer science from the University of Califor-
nia, Irvine, in 2014. His research focuses on data
mining and large scale data analysis.

Paul Rigor received the BS degrees in neurosci-
ence and in cognitive science with computing
specialization from the University of California,
Los Angeles. He is currently working toward the
PhD degree under the supervision of Prof. Pierre
Baldi in the Donald Bren School of Information
and Computer Sciences. His research focuses
on machine learning applications for high-
throughput sequence analyses leveraging high-
performance computing resources.

Leonard Sender received the MD degree from
the University of the Witwatersrand, Johannes-
burg, South Africa, in 1982 followed by a pediat-
rics internship and residency at UC Irvine
Medical Center. His pediatrics hematology/oncol-
ogy sub specialty training included Childrens
Hospital of Los Angeles. He is currently a clinical
professor of Medicine at the UCI School of Medi-
cine, director of the Adolescent and Young Adult
(AYA) Cancer Program at the Children Hospital
of Orange County (CHOC), director of Clinical

Operations and Program Development and division chief, Pediatric
Oncology, at the UCI Medical Centers Chao Family Comprehensive
Cancer Center.

Pierre Baldi received the PhD degree from the
California Institute of Technology. He is currently
the chancellors professor at the Department of
Computer Science, director of the Institute for
Genomics and Bioinformatics, and an associate
director of the Center for Machine Learning and
Intelligent Systems at the University of California,
Irvine. His research focuses on artificial intelli-
gence and statistical machine learning and their
applications to problems in the life sciences, par-
ticularly in chemoinformatics, proteomics, geno-

mics, and systems biology. He is credited with pioneering the
development and application of graphical models and deep neural net-
works in bioinformatics and chemoinformatics and has published more
than 250 research articles and four books. He is a fellow of the AAAI, the
AAAS, the ACM, the IEEE, and the ISCB and received the 2010
Eduardo Caianiello Prize for research in neural networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZELLER ET AL.: A GENOMIC ANALYSIS PIPELINE AND ITS APPLICATION TO PEDIATRIC CANCERS 839



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


