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ABSTRACTT his paper presents a study in the asymmetrical semi-sigeeiiearning framework,

where only positive and unlabeled data are available, andgplication to a bio-data process-
ing problem. We show that under very mild assumptions, theeNBayes classifier can be
identified from positive and unlabeled data. From this stwely derive algorithms that we ex-
periment on artificial data. Lastly, we present an applioatdf this work to the problem of the
extraction of local affinities in proteins for the prediatiof disulfide connectivity.

RESUME.Cet article présente une étude en apprentissage autongatgmi-supervisé asyme-
trique, ou seules des données positives et non étiquetéedisponibles, ainsi qu'une applica-
tion a un probléeme bio-informatique. Nous montrons que siesshypotheses faibles, le classi-
fieur naif de Bayes peut étre identifié a partir de donnéegipesiet non étiquetées. Nous en dé-
duisons des algorithmes que nous étudions sur des donn#f@sedles. Enfin, nous présentons
une application de ces travaux au probléme de I'extractiaffithités locales dans les protéines
pour la prédiction des ponts disulfures. Les résultats pdtemt d’étayer une hypothése sur la
maniére de formaliser les données biologiques pour des'oa@sdctions physiques locales.
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1. Introduction

In this paper, we consider the problem of learning in the amgtnical semi-
supervised framework. This problem we tackle is also sametireferred to the prob-
lem of learning from positive and unlabeled data. This patéir context of learning
suppose that we deal with binary learning problems and trailadle data consist in
unlabeled data and data from only one of the two classegdctile positive class (the
other one is called the negative one).

Let X be a discrete feature space andfet= {0, 1} be the set of classes, where
1 denotes the positive class and 0 denotes the negative dreecldssical statistical
learning framework assumes the existence of an underlyilogbility distributionP
over X x Y and that the available examples are elementX of Y independently
drawn according td°.

This distributionP determines:

P(z) =Y P(x,y) foranyz € X
yey

P(y)= > P(z,y)foranyy € Y
zeX

P(z,y) P(z,y)
P(y) P(z)
where respectivelyP(y) # 0 andP(z) # 0 [1]

P(zly) = andP(ylz) =

In the asymmetrical semi-supervised framework, it is sgppdhat the available
examples are:

— positive examples drawn accordingfgz|1)
— unlabeled examples drawn according?@r)

This context of learning is intermediary between the ctadssemi-supervised
learning, where positive, negative and unlabeled data\aiahle, randomly drawn
from distributionsP(z|1), P(x|0) and P(z), and the unsupervised learning where
only estimates of the distributiof’(x) are available through unlabeled examples:
positive and unlabeled data provide less information thata égh semi-supervised
learning but more than unlabeled data. On the one hand,dksichl results on semi-
supervised learning context cannot be used because theyas®me knowledge on
the data distribution over the negative class. On the otaed hpositive and unlabeled
examples must provide more information than only unlabebaimples, so estimate
accuracy and classification performances should be imgrove

As in the classical learning framework, the goal is to corapiubm the data a
classifierf : X — Y which minimizes the prediction risk?(f) = P(f(z) # y).
Unfortunately, it can be easily shown that the distribusid?(x) and P(z|1) on X
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do not determine the distributioR over X x Y. As a consequence, the best clas-
sifier cannot be inferred from positive and unlabeled datméfwe had a complete
knowledge ofP(z) andP(z|1).

However, if we know that” belongs to some restricted class of distributions, it
becomes possible th&t(z) and P(x|1) determine the distributio®. An example of
such a situation occurs when it is known ttfats deterministicj.e. P(z,0) = 0 or
P(z,1)=0forallz € X.

In this paper, we mainly study the case where it is known thsatisfies the Naive
Bayes assumption: the attributesof 2 are independent conditionally to each class
(P(zly) = [ P(z*|ly)). The Naive Bayes rulect Section 2.1), which assumes that
target distribution follows this assumption, is well knotengive pretty good results
in classification even if the assumption is not met (Domingtcs., 1996).

In (Geigeret al.,2001), it was shown that distributions which satisfy NaivayBs
assumption can be identified, up to a permutation of the &tadsy unlabeled data
when the number of attributes is at least three. Analytioahiulas are provided in
this paper. However, they do not take into account inforamagirovided by positive
examples and we show in Section 4.2 that their approachnejaihuge number of
examples to obtain accurate estimate#fsJection 4.2), which makes it difficult to use
these formulas in practice.

It is clear that if Naive Bayes distributions are identifiaitom unlabeled data,
they are identifiable from positive and unlabeled data. Kbedess, we show in this
paper that Naive Bayes distributions can be determined frositive and unlabeled
data under slightly milder conditions than from only unlitoedata. Moreover, we
give new analytical formulas to estimate target distrimufrom data. These formulas
provide consistent estimators for these parameters. Empetal study ¢f Section
4.2) shows that these estimators are significantly moreratethan those given in
(Geigeret al.,2001) and requires much less examples.

In (McCallumet al.,1999), the authors propose a method based ondE8éction
2.3) to compute Naive Bayes distribution parameters in thgsecal semi-supervised
framework based on a maximum likelihood criteriarfi Section 2.2). This method
supposes the knowledge of the distributiBfw?|y = 0). In the asymmetrical semi-
supervised context this distribution is however unknowne pYopose a variant of
this method to compute target distribution parameters thighcriterion of the maxi-
mum likelihood €f Section 2.2) using EMcf Section 2.3) in the asymmetrical semi-
supervised context.

In order to compare the rate of convergence of these estimatal their perfor-
mances for learning tasks to the estimators defined by (Me@agt al.,1999) for the
semi-supervised context and by (Geigeal.,2001) for learning from unlabeled data,
we carry out an experimental study on artificial data (Secdip The obtained results
show that learning from positive and unlabeled data prevgignificantly better per-
formances than learning from unlabeled data and show thaiesults are very similar
to the results obtained in the classical semi-supervisathileg where labeled exam-
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ples from both classes are available. It is a very intergs@sult because it shows that
the loss of negative examples does not decrease perforsiance

This study was originally motivated by the problem of thedicdon of disulfide
connectivity in proteins (Section 5). Predicting protdiidimensional structure, from
their sequence of amino acids, is one of the challenges ofulrent researches in
bioinformatics. This structure is constrained by diffarkimds of interactions: phys-
ical, electrostatic, etc. Correctly predicting these liatéions should considerably
reduce the number of potential structures for the proteins.

In this study, we consider the prediction of disulfide bontiéclv are the strongest
of these interactions. This phenomena of local interactiise between two distant
amino acids - cysteines - after their oxidation. Many papeesent methods to predict
whether a cysteine is bonded, but few of them address thedgxot of the problem:
predict which cysteine will form a bridge with a given cystei We are interested by
this part of the problem.

Most of the contributions on the prediction of the disulfidenectivity in pro-
teins (Fariselliet al., 2001, Fariselliet al.,2002, Vulloet al.,2004) consider pairs of
non bonded cysteines as negative examples, which cannotddsond. Our main
contribution on that topic is to consider these examplegspE non bonded cys-
teines, as unlabeled examples because we suppose thaistheteenough informa-
tion that would explain the lack of interaction. In this cadata are positive (pairs of
bonded cysteines) and unlabeled (pairs of non bonded ngsjeiasymmetrical semi-
supervised learning methods are necessary. Our expesrskotv that considering
that unbounded cysteines are unlabeled examples is a seeftergy than considering
that they constitute negative examples.

The paper is organized as follows. In Section 2, we give atsuovey of methods
and results about the Naive Bayes classifier, EM method anaiéntifiability prob-
lem. In Section 3, we study the identifiability of Naive Bayasdels from positive
and unlabeled data. We show that the identifiability prokilewell posed and we give
analytical formulas to compute Naive Bayes models for thistext of learning. We
also present an algorithm to estimate model parameterd loaste maximum likeli-
hood principle using EM. We give in Section 4 experimentalits on artificial data
which make it possible to conclude on the rate of convergehoer algorithms and
their performances for classification tasks. Section Seurssexperimental results on
biological data for the problem of the prediction of disufficonnectivity in proteins.

2. Preliminaries

Section 2.1 presents the Bayes rule, the Naive Bayes assumaptd the associ-
ated classifiers. We give in Section 2.2 a short descriptidineomaximum likelihood
principle and its application to the Naive Bayes classifiarsupervised and semi-
supervised contexts. Section 2.3 presents the EM methqub(fEation Maximization)
and the application of this method proposed in (McCalketnal., 1999) to compute
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Naive Bayes models parameters in semi-supervised conttxtlve maximum like-
lihood criterion. Lastly, we give in Section 2.4 a short ®yof the paper (Geigeat
al., 2001). This work shows Naive Bayes models identifiabilignfrunlabeled data
and provide analytical formulas to compute models pararpete

2.1. The Bayes rule and the Naive Bayes classifier

Let X = ﬁ X' be a domain defined by symbolic attributes. For alt € X,
i=1
let us denote by the projection ofr on X and let us denote bpom(x?) the set
of possible values aof?. Let P be a probability distribution ovek and letY be a
set of classesy{ = {0, 1} all along this paper) provided with conditional probafilit
distributionsP (y|z) forall z € X.

The optimal decision rule for assigning each objeet X to a class is thBayes
rule Cpgqyes that selects the clagse Y with the highest probability knowing.

CBayes(w) = argmax P(y|x)
Y

= arginax P(aly) - P(y) (xe X,yeY) (2]

The Bayes classifier requires complete knowledge of the nlyidg probability
distribution. It is the reason why it is generally not possito estimate this classifier
without complementary information or hypotheses.

When the attributes are independent conditionally to eéadscthat is, the Naive
Bayes assumption is met, thét{z|y) = [] P(«'|y). In such a case, the number of
=1

parameters to be estimated is Io@(dm)_whered = max |Dom(z")|. The Bayes
classifier becomes the Naive Bayes classifigts, defined by:

Cwp(@) = argmax P(y) [[ P(aily) (v € X,yeY) 3]

Yy =1

The assumption of independence is generally not satisfiedieder, Naive Bayes
classifier is known to give pretty good results for classtfaatasks (Domingost
al., 1996).

WhenY = {0,1}, Naive Bayes classifiers are completely specified by the fol-
lowing set of parametersey = P(y = 1) and\y; = P(2' = kly = j) where
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1 < i< m,k € Dom(z) andj € {0,1}. An instanced = {a, \ir;,i €

[1,...,m],7 € {0,1},k € Dom(x%)} of these parameters is calledrmdel

2.2. The maximum likelihood principle

LetS = {(xs,ys),s = 1,...,1} be a set of independent and identically distributed
data according to the joint probability distributid¥(x, y) = P(z) - P(y|x) and letd
be a model. One quality criterion of the modefor a dataseft is the likelihood.

Thelikelihood L(6, S) (resp. thelog-likelihoodi(6, S)) of S for the modeb is
defined by:

L6,S) = ﬁ P(zs,ys|0) and 1(0,S) = log L(6,5) [4]

s=1

The maximum likelihood principle recommends to choose aehéavhich max-
imizesL(6, S) —and thus als&(0, S).
2.2.1. Likelihood of Naive Bayes models in supervised context

Let ng (resp. n1) denote the number of examples classified '0’ (resp. '1) jn S
ng +ny =1, and Ietnfj denote the number of examples y) in S such thate® = k
andy = j. We have:

1 m
10.5) =[] P [1_1 Platin)]

s=1

=a™ - (1—a)"- I I )\l,;; [5]
1<i<m,0<5<1
k€Dom(xt)

16,5) = log L(0,5)
= nyloga + nplog(l — ) + Z nfjlog Nikj [6]

keDom(z?)

It can be shown thak (6, S) is maximal when:

ni
o =
ng + ny

k

nr.

k _ ]
K ST vl

ij

re€Dom/(x?)
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2.2.2. Likelihood of Naive Bayes models in a semi-supervised gbnte

In the semi-supervised learning context, two datasets eadable: S, =
{(z1,y1), ..., (z;,y1)} is a set of labeled data, arft},,; = {7}, ...z}, } is a set of
unlabeled data.

We suppose tha;,;, andS,,,,; have been provided by an oracle which, with prob-
ability g, draws a labeled example and with probability- 3 draws an unlabeled
example. Let' = 0 U {3}.

The probabilities to draw a labeled example= («,y), or an unlabeled example
z = z with the model’ are computed as follows:

P(Z = (xay)w/) = ﬁ : P(‘Tay'e)

P(z=2zl0") = (1—-3)- P(z|0) (8]
with

P(x|0) = P(y = 110)P(z,yly = 1,0) + P(y = 0[0) P(z,yly = 0,0)  [9]

The likelihood can be written:

l U

L(0', Siap, Sum) = [ [ BP(2s,ys10) [[ (1 = B)P(2/]0) [10]

s=1 r=1
With notations defined on previous section:
L(O, Stav, Sunt) = B'LO, Siap) (1 = B)" (0, Suni) [11]

with

I

L(0, Sun1) = H (a H Aikn + (1 —«) H )\iko) [12]

r=1 1<i<m 1<i<m
k/al=k k/zt=k
The value ofs which maximizes the likelihood i§ = HLZ, i.e. the proportion of

labeled examples in the learning set. Nevertheless, trenpersy and Afj which
maximizeL(#’, S) cannot be computed using analytical formulas. Howevey, te
be estimated using methods such as Ed¥l.gection 2.3).
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2.3. Expectation-Maximization method (E.M.)

The EM method was elaborated in (Dempsteal.,1977) for inference of mixture
models densities. This section presents a short surveysofitbthod and an applica-
tion to Naive Bayes models estimate in the semi-supervigategt (McCallumet al.,
1999).

2.3.1. Method

This section describes the E.M. method following (Hastial., 2001). Letd’ a
model as previously defined, the set of observed dat#,,, the missing data and
the entire set of the dat&, = (Z, Z,,). Let us denote by:

—1o(0',T) the log-likelihood ofT" for the model’,
—11(¢, Z,,|Z) the log-likelihood ofZ,,, for the modeb’ knowing Z,
—1(0', Z) the log-likelihood ofZ for the modeb’,

thenl (6, Z) + 11(0', Z,,| Z) = 10(0', T), that is to say:

10, 2) = (0!, T) ~ 11(0'. Z| Z) [13]

Assuming that the data are drawn according tnd that” is observed, previous
equality terms are random variables depending,qf we can thus compute expected
values of these variables:

E0',2)12,0) = E(l(¢0/,T)|Z,0) — E(1.(0', Zm)| Z,0) [14]

By denotingQ(¢’,0) = E(lo(0',T)|Z,0) andR(¢’,0) = E(l.(¢', Z,)| Z, 6), and
knowing thatE(1(0', Z)| Z,0) = I(¢', Z), we have:

10, 2) = Q¢',0) — R(0,0) [15]

We search a modél which maximizes(¢’, Z). The E.M. method is based on the
following theorem, which says that maximizidggcan not decrease the likelihood.

Theorem 1. If Q(6',0) > Q(0,6) thenl(¢', Z) > (6, Z) (Dempsteet al.,1977)
Algorithm 1 depicts the EM algorithm. The likelihood of thedl model6© is a

local maxima. (Dempstest al., 1977) recommends to repeat the experience and to
select the moded© which maximizes the likelihood.
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Algorithm 1 EM
Require: Z

1) Choose an initial modéP.

2) ComputeR (6%, ) for the current (expectation phase).

3) Find#"t! such tha(9"+1, 0%) > Q(6, 6%) (maximization phase).
4) Iterate to step 2 until convergence.

Ensure: a modelg°

Algorithm 2 EM + NB semi-supervised
Require: Siabs Suni

1) Let6° be the model learned on labeled data
2)Va! € Syn; computeP(y' = jla’,0™)

3) Computeé"Jrl using formulas [16]

4) Goto step 2 until convergence

Ensure: 67

2.3.2. EM method and the Naive Bayes classifier

EM has been used in (McCalluet al.,1999) to compute Naive Bayes models in
a semi-supervised framework. Givélh,, and.S,,;, and a modeb™ at stepn, the
parameters and\;x; of the next moded”™+! are computed as follows:

4 .
n1+ > Py, = 1|z,,0")
_ s=1
“= I+ ’

U ..
n?j + SZ:I P(yfs = j|xsl =k, Hn)
Aikj = 5 [16]
Sl + 32 PGt = glet =07

T

WhereP(A|6") is the estimated probability of A within the mod#i.
Algorithm 2 summarizes the algorithm.

Results for text classification tasks show a notable imprea# of the perfor-
mances when unlabeled data are added to the labeled data-set
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2.4. ldentifiability of Naive Bayes model parameters with diditition P(x)

In (Geigeret al.,2001), it was shown that under Naive Bayes hypothesis, param
eters of the model are identifiable from distributi®z) on X when the number of
attributes is at least equal to three up to a permutationetthsses (see paper for
further details).

In order to compare our work to theirs, we shortly recall iis 8ection the formulas
established in (Geigeet al., 2001) whenY = {0,1} and attributes are binary to
compute Naive Bayes models parameters with distribugian).

Let:
zij,.r=Pl*=12"=1,..,2"=1),
Di _P(xi = 1|y = 1)7
qi = P(Il = 1|y_ 0)7
a=Ply=1). [17]
Therefore:
Zijo.w = QPiPj-...pr + (1 — @)qiq;...qr [18]

Let s, x1, ..., Tm, u1, ..., Uy, be the new coordinates after the following transfor-
mation:

a=(s+1)/2,pi=2i+ (1 —s)ui,qi = v — (1 + s)u; [19]

A second transformation on coordinateis recursively defined as follows:

Zij < Zij T ZiZj,
Zijr € Zigr — Zijlr T ZirZj — ZjrZi — ZiZjZr

and so forth. [20]

Then,z, u, s can be computed as follows:

Ti = Zi,
uy = 4/ 212213223 + (2123)2/4/ 223,
s = —z123/(2u1223),

u; = 215/ (pa(s)ur) fori > 1 with po(s) =1 — 52 [21]
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No application is proposed in the paper. In Section 3.4, vep@se an algorithm
based on these formulas to compute Naive Bayes models frtabelad data.

3. ldentifiability of Naive Bayes models for semi-supervisa learning variants

Several authors (Denét al., 1999, Deniset al.,2003, Liuet al.,2003, Liuet al.,
2005) studied the asymmetrical semi-supervised learmihgre the available labeled
examples are all positive and drawn according’tfa|y = 1). Naive Bayes classifiers
have also been used in this context of learning (Dehéd.,2003). Note that in (Denis
et al., 1999, Deniset al., 2003, Liuet al.,2003), authors consider that the parameter
a = P(y = 1) is known, which is not true in all situations. We show belowtth
distributions which assume Naive Bayes hypotheses aréfidéte from distributions
P(z) andP(x|y = 1) without additional information.

In Section 3.1 we present general results about asymmidiaming and show
that without assumption on the distributions, asymmeltseai-supervised learning
is not a well-posed problem. Section 3.2 presents a theatetiudy on the identifia-
bility of Naive Bayes models in asymmetrical semi-superdisontext. We provide a
formula that shows that the model parameters are identfiablsoon as the number
of attributes is at least equal to 2. This formula provide®aststent estimator for
P(y = 1). Section 3.3 gives an adaptation of Algorithm 2 to positiad anlabeled
examples. Lastly, in Section 3.4, we propose an algorithhedaon from unlabeled
data using formulas given Section 2.4, provided in (Geged.,2001).

3.1. General case

Statistical learning suppose the existence of distrilmsti®(z) on X and P(y|x)
onY forall z € X. WhenY = {0,1}, these distributions are determined by
the knowledge ofP(x), P(z|ly = 1) andP(y = 1). IndeedP(y = 1l|z) =
% andP(y = 0|z) =1 — P(y = 1]z). Positive and unlabeled datasets
can be used to estimafé(z) and P(z|y = 1) on X. But generally, the parameter
P(y = 1) cannot be inferred from positive and unlabeled data.

Property 1. Without further informationp(y = 1) is not determined by distributions
P(z)andP(z|y = 1).

Proof. Letr = min{% |z € X andP(z|ly = 1) # 0}. Forallx €0, 7],

there exists”’ defined onX x Y by:
—P'(z,y) =X-Plzly=1)if P(z) #0andy =1
— P'(z,y) = P(x) — X P(z|ly =1)if P(x) #0andy =0
— P'(z,y) = 0 otherwise.
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With this definition,P’ is a generative distribution:
—Py=1)=A
~P'(aly = 1) = =D = Plafy = 1)
—P'(zly =0) = P(fﬂ)*/\ilj;\(r\yzl)

~P/(2) = A~ Pl(aly = 1) + (1 = X) - P(aly = 0) = P(a)

Let A1 €]0,7] andAs €]0, 7] suchthaf\; # A,. Let P| and P be the distributions
associated as defined previously. Th&\(z) = Pj(z) Vz € X, P{(z]ly = 1) =
Pj(zly =1)Vz € X,butP](y =1) # Py(y = 1), soP(y = 1) is not determined.

O

Remark: When it is known that the distributions satisfy complementarop-
erties,P(x) and P(z|y = 1) may determiné’(y = 1). For instance, deterministic
models,i.e. P(y = 1|z) = 1 or P(y = 1|x) = 0 for all z, are such distributions. In
this case:

Ply=1)=> P)Py=1x)= Y P [22]

reX P(aly=1)70

3.2. Identification of Naive Bayes model parameters with diswiions P(x) and
Pzly =1)

In this section, we show that for distributions which follethe Naive Bayes hy-
pothesis,P(x) and P(z|y = 1) determineP(y = 1) as soon as the number of at-
tributes is at least 2. Moreover, we define a consistent asinfior this parameter.

Theorem 2. Let P a probability distribution on a discrete feature spakesuch thatP
follows the Naive Bayes assumption. TH¥n) and P(z|y = 1) determineP(y = 1)
provided there exist at least two attributesandz? such thatP (z*|y = 1) # P(z")
andP(2? |y = 1) # P(z7).

Proof. First, let us consider extremal values 8¢y = 1):

—remark thatP(y = 1) # 0 since we suppose the existence of positive data.

—if P(y =1) =1, thenP(z) = P(x|y = 1) which contradicts the hypothesis.
Consider now that < P(y = 1) < 1 and note that :

P(a'ly =1) # P(a') & P(a'ly = 1) # P(a'ly =0).
Let:

—pi = Pz = kly =1)

—qir = P(z* = kly = 0).

—aip = P(z' = k)
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—aj = P27 =1)
—aig g =Pt =knal =1)

For each attribute paifi, j) (¢ # j), and for each pair of attributes valugs!
(k € X, 1 € X9), the following system holds:

i =pi-Ply=1) +
aj =piu.Ply=1) +
Qi i1 = Pik-pj1.- Py =

qik-(1 — P(y = 1))
g1-(1— Py =1))
1) + qir-qu-(1—P(y=1))

Let (i,5) and(k, 1) be a pair of attributes and a pair of values such;as# gix
andp;; # g;;, from the two first equations, we can write:

i — pik-Ply =1)

aj —pi-Ply=1)
= 23
Qi =Py =1 (23]

1-Py=1

and ¢;; =

By replacingg;, andg;; in the third equation, we obtain, after simplification:
P(y = 1)(pikpji — QikPji — QjiDik + ik ji) = Qg jl — QikQji [24]

In order to obtain an analytical expression fy = 1), it is necessary to show
'[hatpikpjl — QikPjl — QGIPik + ik i is different from0. By replacingy;y, a1y Okl
with their definitions, we obtain:

PikPjl — QikPjl — QiPik + Qik i

=1 -Ply=1)).(pir — Qik)-(pjl - sz) [25]

which is not null under theorem assumptions. Therefore:

it 1 — Ui
P(y _ 1) _ ik,jl ik gl [26]
PikPjl — QikPjl — Q5iPik + Qik i

P(y = 1) is thus determined b¥(x) and P(z|y = 1). O

This formula provides a natural estimator fdP(y = 1). Let Gy ji,
&k, i, Pik, pj1 be estimates ok, i, auk, i, Pik, P41 respectively, we consider:

> Gkt — Qukdp
A i,5, kel
Ply=1)= e - [27]
( ) > PikDjt — QikDji — QPik + Qg ji
i,5,k,1
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Algorithm 3 NB asymmetrical semi-supervised
Require: Spos, Sunt

1) Compute estimatoe®;y, ji, Gk, &1, Dik, Djt Of i ji, ik, A1, Dik, P4t TrOM Spos
andS,,;, 1 <i,5 <m, k € Dom(z%),l € Dom(z7)

2) ComputeP(y = 1) using [27]

3) Computej;, ¢;; using [23]

Ensure: a model)

Other estimators could be provided by formula [26].

In practice, the average of th‘%(y = 1) estimated with all the pairs of attributes
(2%, 27) such thatp;r, # Gir andp;; # ¢; may not provide accurate estimates of
P(y = 1) sincep;rp;i — urPji — & ibik + Guk, ;1 €an be very close to zero when
the sizes of the datasets are small. We do not have studieglitstion whether it
is possible to have better estimators but this is an impbdaestion that we plan to
address in future work.

We deduce from this study Algorithm 3.

In (Geigeret al.,2001), it was shown that under Naive Bayes hypothesis, param
eters of the model are identifiable from distributiét{z) on X when the number
of attributes is at least equal to three up to a permutatich@tlasses (see Section
3.4). Results obtained on artificial data (Section 4) shawistimator [27] converges
really faster than the one computed from unlabeled data(atflySection 3.4).

3.3. Estimate Naive Bayes models parameters with the criteriaraximum
likelihood

Previous section presents an algorithm to compute the pdeasof Naive Bayes
models analytically. We were also interested to deterntiie fjarameters with the
criteria of maximum likelihood. The likelihood.(6', Spos, Suni) Of Spos @aNd Sy
for the modeb’ can be written as follows:

L(8', Sposs Sunt) = B'L(8, Spos)(1 — B)' L(6, Sunt) [28]

With the same notation as in Section 2.2, and wéittepresenting now the probability
to draw a positive labeled example, we obtain:
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Algorithm 4 EM+NB asym
Require: S = {Spos, Suni}
1) EstimateP (z° = kly = 1) and P(z* = k) with Sp,s €t.S,,.
2) ComputeP(y = 1) using formula 27
3) Compute an initial model” from the estimate$*(z* = kly = 1), P(z" = k)
andP(y =1).
4)Vx' € Syn, computeP(y = jla’,0%),j € {0,1}
5) Compute a new modéf+! (see Section 2.3.2 for details)
6) Iterate to step 4 until stabilization

- §S
Ensure: 603,,

L(9/7 Sp057 Sunl)

:5lalH( I1 Aikl)uﬂ)“ﬁ(a IT xa+a-a I] )\ik,o)

r=1 M<i<m r=1 1<i<m 1<i<m

k/zl=k k/xl=k k/xl=k

[29]

As in the classical semi-supervised case, the values ofdhengeters that maxi-
mize the likelihood cannot be computed analytically, solrods such as EM must be
used. We present now an iterative algorithm (Algorithm dpted from Algorithm 2
(McCallumet al., 1999), which estimates paramefefy = 1) by maximizing the
likelihood using E.M. and using estimator [27].

Experiments on artificial data show that if the size5gf, is small, computing the
model parameters by using the criterion of maximum likedithémproved classifica-
tion performances and accuracy of the estimates.

3.4. Algorithm to compute Naive Bayes models from unlabeled data

We use formulas provided by (Geiget al., 2001) €f Section 2.4) to compute
the parameters of Naive Bayes models from unlabeled datée tNat thez;; . (cf
Section 2.4) can be estimated from unlabeled data. Notelsgdwo models can be
computed according to the signof. We deduce from these formulas Algorithm 5.

Experimental results on artificial data (Section 4) show th@e samples are nec-
essary to provide accurate estimates of the target NaivesBapdels. When positive
examples are available, they can be used to identify class®to provide better esti-
mates.



688 RSTI- RIA —20/2006. New Methods in Machine Learning

Algorithm 5 NB unl

Require: z
> A zrizkjzijt(zkij)?/4
1<i,j<m

. + _ i#iFk - +

1) Estimates; = = VE e {l,..,m},up = —uy
1<i, i <m,i#j#k
2) Estimatest = — =L &2 ands™ = —s ™
’U.,,ij-

1<i,,k<m,i#j#k
3) Compute moded* from u;” andu;” oru; (i > 1) according to the sign of;;
i.e. such thatign(u;) = sign(z1;/(p2(s)ui))
4) Compute mode?~ from w; andu;” oru; (i > 1) according to the sign ofy;
i.e. such thakign(u;) = sign(z1:/(p2(s)uy ))

Ensure: two model$)™ andéd—.

4. Experimental results on artificial data

In order to compare the algorithms presented in this papelead an experimental
study on artificial data. Section 4.1 presents the expeitahgnotocol. Next sections
present the results that have been obtained. They makesdihpeso compare the
accuracy of the estimates (Section 4.2) and the classdicagérformances when the
size 0fSpos (Siap for algorithm 1) ands,,,,; grows (Section 4.3).

4.1. Experimental protocol

Ten target model§, = {P(y = 1), P(zly = 1), P(zly = 0)} are randomly
drawn. DistributionsP(z|y = 1) and P(z|y = 0) being product distributions (which
satisfy the Naive Bayes assumption) ogér1}™ (n € {20,50}) drawn from a dis-
crete uniform distribution. The learning datasets are geed with model$,.. For
eachn € {100, 300,500} and for each modél., 20 independent dataseis,, (resp.
Suni) Of n labeled (respl0n unlabeled) examples are drawn. The results (Table 1 and
2) are averages computed on 200 datasets (20 datasetstionedel). Test setS;.s;
contain 10000 examples generated frgmPositive examples set$,,, are extracted
from Sjgp, SO|Spos| = P(y = 1) * [Siapl-

4.2. Parameters estimate accuracy
We first compare the accuracy Bfy = 1) estimates provided by algorithms 2, 3,

4 and 5. Table 1 shows the mean square errd?(@f = 1) estimates obtained by the
four algorithms.
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We point out that algorithm 2 learns frof,;, and S, algorithms 3 and 4 from
Spos and Sy, and algorithm 5 withS,,,,;. The first line indicates the size of the
samples, the second one the number of binary attributesthedsahe square root of
the mean square error &f(y = 1) estimates for the four algorithms.

|Stab], [ Sunt] 100, 1000 300, 3000 500, 5000
Number of attributeg 20 50 20 50 20 50
EM+NB semi-sup. 0.014 0.010 0.008 0.006 0.006 0.005
(Algorithm 2) (0.003 | (0.002 | (0.0029 | (0.00) | (0.002 | (0.000Q
NB asy. semi-sup. 0.047 0.022 0.023 0.012 0.012 0.007
(Algorithm 3) (0.013) | (0.009) | (0.006) | (0.004) | (0.004) | (0.003)
EM+NB asym 0.014 0.010 0.008 0.006 0.006 0.005
(Algorithm 4) (0.003 | (0.002 | (0.0029 | (0.00) | (0.002 | (0.000Q
NB unl 0.127 0.080 0.088 0.048 0.069 0.032
(Algorithm 5) (0.081) | (0.053) | (0.081) | (0.038) | (0.069) | (0.025)

Table 1. Square root of the mean square error B{y = 1) estimates obtained by the
four algorithms. Best results are in boldface. Standardiateasns are indicated between
brackets

Algorithms 2, 3 and 4 provides the better results accordirgjdbility of the esti-
mators. We have carried out other experiments where EM isnuandomly drawn
initial models: many runs are necessary to obtain a accesiimate ofP(y = 1)
while using the model inferred by Algorithm 3 as the initiabdel makes it possible
to run EM only once.

Worse results are obtained by algorithm 5 (NB unl). Thisneator converges
much more slowly than others. It requires too much examplgsavide good esti-
mates in practice.

We can also observe that the two algorithms which use E.Mhotktends to have
the same results.

4.3. Classification performances

We now present the results obtained for classification tagkse experimental
protocol is described in Section 4.1. We consider the doitenf prediction error rate
(P(f(z) # y)). Results are reported in Table 2. First line indicates theaiver of
binary attributes. The second one gives the averaged picadarror rate of the target
modelsd. on S;.s; and the standard deviation of it for the 200 experiences.

We can note that results obtained by algorithms learning fpositive and unla-
beled data tend to be similar to results obtained with labaled unlabeled data. It



690 RSTI-RIA—20/2006. New Methods in Machine Learning

shows that the loss of negative examples do not decreasaparices. This is very
interesting to know that it is not penalizing not to have ligkexamples for one on
the two classes. For some classifications problems, dataeotlass are most difficult
to obtain than data of the other class.

Note that standard deviations decreases when size of hepdiaitasets increases.
They are very large for small sizes of the data-sets, butlsmahen these sizes grow.
This result is not really surprising after having obseneplarameters estimate accu-
racy in Section 4.2.

The less accurate algorithm is the algorithm 5, which leavitis only unlabeled
examples. We can explain this result by the high mean squeseabtained by this
estimator.

| Nb of binary attributes’ | 20 | 50 |
0. performances 0.049 | 0.001
(0.022) | (0.002)

| Sets size | Algorithm | Datasets | Performances |
Algorithm 2 Siab, Suny | 0.051 | 0.002
[Sian] = 100 EM+NB semi-sup (0.022 | (0.002
Algorithm 3 Sposs Sunt | 0.106 | 0.015
|Sunit| = 1000 | NB asy. semi-sup (0.036) | (0.021)
Algorithm 4 Sposs Sunt | 0.051 | 0.002
EM+NB asym (0.022 | (0.002
Algorithm 5 Sunl 0.225 | 0.113
NB unl (0.082) | (0.087)
Algorithm 2 Siab, Suni | 0.049 | 0.001
[Siab| = 300 EM+NB semi-sup (0.022 | (0.002
Algorithm 3 Sposs Suni | 0.068 | 0.004
[Suni| = 3000 | NB asy. semi-sup (0.024) | (0.005)
Algorithm 4 Spos; Sunt | 0.050 | 0.001
EM+NB asym (0.022)| (0.002
Algorithm 5 Suni 0.181 | 0.108
NB unl (0.086) | (0.078)
Algorithm 2 Siab, Suny | 0.049 | 0.001
[Siab| = 500 EM+NB semi-sup (0.022 | (0.002
Algorithm 3 Spos; Sunt | 0.057 | 0.002
|Sunit| = 5000 | NB asy. semi-sup (0.022) | (0.003)
Algorithm 4 Sposs Sunt | 0.049 | 0.001
EM+NB asym (0.022 | (0.002
Algorithm 5 Sunl 0.164 | 0.106
NB unl (0.091) | (0.075)

Table 2. Performances of the algorithms on artificial data
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5. Prediction of the disulfide connectivity into proteins

This section presents experiments of the Algorithm 4 ondgjimial data. The bio-
logical problem is to predict theisulfide bridgesvithin a protein.

A protein may be represented by its primary structure — aesgcpiof amino acids—
from which a tridimensional structure is gathered; diselfididges are involved in the
3D conformation of a protein, as covalent bonds between tgtethes (amino acid
C). As a consequence, predicting such bridges from the pyiseguences would be
a first step towards the prediction of the tridimensionalctre of proteins.

One part of the information necessary (but not sufficient) gredicting such
bridges is located around each cysteine. In our approacpriticting disulfide
bridges, we thus suppose that the amino acids located aroysteines contribute
to establish amffinity (also calledpropensity between those two cysteines.

Determining whether two fragments of a protein have affioitg for the other can
be represented as a problem of supervised classificaticrewhe pairs of fragments
around two bonded cysteines are positive examples, and pafragments around
two unbonded cysteines are negative examples. Instead ake tie hypothesis that
two bonded fragments are positive examples, but that twoneéd fragments could
actually be bonded in another context: the local informmaticound unbonded cys-
teines do not give enough information about the conceptfofigf We are thus in a
case of asymmetric semi-supervised learning: a pair obayss that are not bonded
is a non determined (unlabeled) example rather than a negatample. Indeed, a
cysteine cannot be involved in more than one bridge wheteaay have affinity for
more than one other cysteine.

5.1. Data

The data are extracted from therotein Data Bank (PDB)by Christophe
Geourjon (IBCP, Lyon, France)for the working group ACI GENOTOD
(http://www.loria.fr/ guermeur/GdT){ 227 proteins are available, annotated with re-
gards to known disulfide bridges within each protein. Not# timly oxidized cys-
teines can be involved in a bridge, and either all cysteifi@spvotein are bonded, or
none of them form a bridge. Figure 1 describes the data aicgptd the number of
amino acids in proteins, and Figure 2 describes the proésiosrding to the number
of bridges.

5.2. Experimental protocol

Data representation
We try to estimate local affinities into proteins. In the casdisulfide bridges, these
interactions arise between amino acids located close tieiogs. We thus extract
from the protein sequence a set of fragments centered oeicgst Let us denote by
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windowssuch fragments, and let us denate,,, ...,x_1, g, z1, ..., 2, @ window of
radiusn (zq is thus a cysteine). We work with an alphabet of size 231 (remolb
ordered couples on an alphabet of size 21: the 20 amino awitis ketter representing
unknown amino acids or missing amino acids when the cysteite® much close to
one end of sequence). We set up three codings:

— simple coding{(z;,z})}, i € {-n,....,n},i#0,x; € f,z; € f'
— double coding{ (x;, «}) } U{(z;,2"_,)}, i € {-n,...,n},i #0,x; € f,z} € [
— crossed codingf(z;, 2})}, 4,5 € {—n,....,n},x; € f,z; € f'

The first coding represents the pairs of aligned amino a@tisden two windows of
the same size. The double coding takes into account thehaictive do not know the
directions of segments and considers the both possibiliibe last coding considers
all the pairs of amino acids that we can form with two segments

Learning protocol

For a protein containing bridges, we have(2n — 1) pairs of windows potentially
in interaction. If a pair is bonded, we consider it as a pesixample. Non bonded
pairs are considered as negative examples in the Naive Bayweach, while they
are considered as unlabeled examples in Algorithm 4.
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We split the set of annotated proteins according to the nurabéridges: the
learning is independent from one set to another. We studiselss =2,3,4, and 5 (for
n = 1, the case is trivial, fon > 5, not enough data is available for a significative
learning).

Test protocol

In order to test the quality of affinity estimation, we set upeat protocol which

accounts for the following information: for each pair of wows in a test protein, we
compute the probability that the two windows have a high #gfithe connectivity

that maximizes likelihood is considered. It comes down tmpaoting the maximal
weight perfect coupling in a full graph. The vertices of tigaaph are the protein
windows, and an edge between two windows is the probablidy these windows
have high affinity between them.

We use 10-fold cross-validations for each of the three previencodings. We
compare results with random selection of the bridges. Forotefm containingn
bridges, the expected number of correctly predicted bedgéh a random selection
is

n

2n—1"

5.3. Experimental results

The best results were obtained with the crossed encodiny:tloese results are
reported here. They are actually an average of 100 expetsmen

Nb of bridges/cysteines per protein 2/4 3/6 4/8 5/10
Nb and % of correctly predict 34 30 16 111
bridges with a random selection 33,33%| 20% | 14,3% | 11,1%
Nb and % of correctly predict bridges 41 26,25 | 14,22 5,8
with Algorithm NB (supervised) 40,2% | 17,5% | 12,7% | 5,8%
Nb and % of correctly predict bridges 60 50,1 | 18,26 | 13,2
with Algorithme 4 (asym. semi-sup.}) 58,8% | 33,4% | 16,3% | 13,2%

Table 3. Experimental results on biological data: the contributioithe algorithm 4
for predicting disulfide bridges is obvious

Other results are available in (Farisedtial., 2001, Fariselliet al.,2002, Vulloet
al., 2004). The best results (Farisedi al., 2002) are mostly better than ours (table
below), but they were obtained by much more sophisticatetioaks (recursive neural
networks), more data, and their methods integrated anathgr information which
is the information about evolution (they encoded fragmeat®rding to profiles). The
differences between their context of experiments and ouake difficult any accurate
comparison.
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Nb of bridges per protein | 2br. | 3br. | 4br. | 5br.
Nb of proteins 156 | 146 | 99 45
Correctly predicted bridges 73% | 56% | 37% | 30%

Table 4. Results obtained in (Fariselét al.,2002)

Our purpose was to determine whether an unbounded pair tdiegs should be
considered as negative example or as an unlabeled example.regults obtained
are sufficient to conclude that our biological hypothesense to be confirmed: it is
relevant to consider non bonded pairs of cysteines as uelhlezamples rather than
negative examples. This hypotheses must now be integmatatbie sophisticated
methods such as RNN, SVMs, etc.

6. Conclusion

In this paper, we lead a study in the asymmetrical semi-sigest context, where
only positive and unlabeled examples are available. We ghatthe asymmetrical
semi-supervised learning is a well-posed problem wheibatés follow Naive Bayes
assumption. This result can be deduce from (Geadgjat.,2001). In this paper authors
show that Naive Bayes models are identifiable from unlabelednples only. This
result is stronger than our but we show that taking into antoiformation provided
by positive examples increases significantly accuracytoheses. We give analytical
methods to identify models at the limit which outperformegé gived in (Geigeet
al., 2001). We also propose iterative algorithm to compute n®delthe criteria of
maximum likelihood, inspired of the algorithm proposedihcCallumet al., 1999)
for classical semi-supervised learning. Both methodsigeosimilar results, which
signify that the loss of negative examples do not penaligégarning.

The application of this work for the prediction of disulfidermectivity supports
an original assumption for data representation. It seenh® toetter to consider un-
bounded pairs of cysteines as unlabeled examples, whielderno information con-
cerning the class, rather than negative examples. We arentlyrworking to apply
this method to other biological data (in particular Betaethpand to determine a pro-
tocol to decide whether there are local affinity in molecul&fe also look for methods
such as SVM which are notably more effective than Naive Bajeessifier and which
could be developed in this framework.
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