
CN=CPCN

Liva Ralaivola liva.ralaivola@lif.univ-mrs.fr
François Denis francois.denis@lif.univ-mrs.fr
Christophe N. Magnan christophe.magnan@lif.univ-mrs.fr

Laboratoire d’Informatique Fondamentale de Marseille
UMR 6166 CNRS, 39, rue F. Joliot-Curie, F-13453 Marseille cedex 13, France

Abstract

We address the issue of the learnability
of concept classes under three classification
noise models in the probably approximately
correct framework.

After introducing the Class-Conditional
Classification Noise (CCCN) model, we in-
vestigate the problem of the learnability of
concept classes under this particular setting
and we show that concept classes that are
learnable under the well-known uniform clas-
sification noise (CN) setting are also CCCN-
learnable, which gives CN=CCCN.

We then use this result to prove the equality
between the set of concept classes that are
CN-learnable and the set of concept classes
that are learnable in the Constant Partition
Classification Noise (CPCN) setting, or, in
other words, we show that CN=CPCN.

1. Introduction

This paper presents a study in the probably approx-
imately correct (PAC) framework. In particular, we
investigate the equality of concept classes in different
classification noise settings from the learnability stand-
point.

More precisely, we study three different noise settings:
the uniform classification noise setting CN (Angluin &
Laird, 1988), the class-conditional classification noise
setting CCCN and the constant partition classification
noise setting CPCN (Decatur, 1997). The second set-
ting is a particular case of the latter and it is char-
acterized by a by a noise process that flips the label
of an example according to unifom classification noise

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

processes defined on each (positive or negative) class.
This setting is therefore a generalization of the uni-
form classification noise setting where noise is added
independently of the class of the examples.

Our first contribution is the formal proof that CN =
CCCN, that is, the concept classes that are learnable
(in the PAC sense) under the CN framework (these
classes are said to be CN-learnable) are also learnable
under the CCCN (they are therefore CCCN-learnable)
framework, and conversely. The idea to prove this re-
sult is that it is possible to bring a CCCN learning
problem down to a CN learning problem by an appro-
priate addition of noise to the labeled examples of the
CCCN problem.

Our second contribution is the proof that CN =
CPCN, that is, the concept classes that are CN-
learnable are CPCN-learnable, and conversely. The
underlying idea of the proof is that a CPCN learning
problem can be decomposed into several CCCN learn-
ing problems.

The paper is organized as follows. Section 2
briefly recalls the notion of PAC-learnability and
formally presents and/or recalls the different noise
settings together with the corresponding definitions
of CN-learnability, CCCN-learnability and CPCN-
learnability. Section 3 gives the proof of CN=CCCN
while section 4 develops that of CN=CPCN. A short
discussion on possible relaxation of noise constraints
is provided in section 5.

2. Preliminaries

2.1. Learning in the PAC Framework

In the classical PAC learning framework, the problem
of concept learning can be stated as follows (Valiant,
1984). Let X be a space (e.g. Rn or {0, 1}d), subse-
quently referred to as the input space. Let c be some
concept from a concept class C (basically, C is a subset

CN=CPCN

of X) and D some fixed but unknown distribution on
X from D, the set of all the distributions on X . The
task of learning is that of identifying c given access
only to a sampling oracle EX(c,D), such that each
call to EX(c,D) outputs a pair 〈x, t(x)〉, with x ∈ X
drawn randomly according to D and t(x) = 1 if x ∈ c
and t(x) = 0 otherwise (i.e. t is the indicator function
of c). C is said to be efficiently PAC-learnable, if, there
is an algorithm A such that for every concept c in C,
for every distribution D over X , for every ε > 0 and
for every δ > 0, A, when given access to EX(c,D),
outputs with probability at least 1 − δ a hypothesis
h ∈ H, where H is a representation class over X , such
that the probability errD(h) := Px∼D(h(x) 6= t(x)) of
disagreement between h and t on instances randomly
drawn from D is lower than ε (Kearns & Vazirani,
1994); δ > 0 is referred to as the confidence parame-
ter (although the confidence is actually 1 − δ), ε > 0
as the precision and errD(h) is the error of h. There
must be two polynomials p(·, ·) and q(·, ·), such that in
order to draw a hypothesis h, A needs at most p(1

ε , 1
δ)

training examples and it runs in at most q(1
ε , 1

δ) time.
These two polynomials should also take as another ar-
gument the size of the concept c to be learned, but as
it will not play any explicit role in our discussion, we
have decided for sake of clarity not to mention it in
the sample size and time requirements.

2.2. CN, CPCN and CCCN Learnability

In the framework of uniform Classification Noise (CN)
concept learning (Angluin & Laird, 1988), the oracle
to which the learning procedure has access is defined
as follows (Angluin & Laird, 1988).

Definition 1 (CN oracle EXcn(c,D)). Let η ∈
[0; 1]. Given c ∈ C and D ∈ D, the uniform Classifica-
tion Noise oracle EXcn(c,D) outputs a pair 〈x, tη(x)〉
according to the following procedure:

(a) x is drawn randomly according to D;

(b) tη(x) is set as

tη(x) :=
{

t(x) with prob. 1− η
¬t(x) with prob. η.

The notion of CN-learnability, defined by Angluin and
Laird (1988) readily follows.

Definition 2 (CN-learnability). A concept class C
is efficiently CN-learnable by representation class H
iff there exist an algorithm A and polynomials p(·, ·, ·)
and q(·, ·, ·) such that for any c ∈ C, for any D ∈ D,
for any ε > 0, for any δ ∈]0; 1] and for any η ∈ [0; 0.5[,
when given access to EXη

cn(c,D) and given inputs ε,

δ and an upper bound ηb < 0.5 on η, A outputs with
probability at least 1− δ a hypothesis h ∈ H such that
errD(h) ≤ ε.

To output such an hypothesis A requires at most
p(1

ε , 1
δ , 1

1−2ηb
) training samples and it runs in

q(1
ε , 1

δ , 1
1−2ηb

) time.

Remark 1. Here, we have assumed the knowledge of
an upper bound ηb on the actual noise η. As stated
in (Angluin & Laird, 1988) and (Kearns & Vazirani,
1994), this assumption is not restrictive since it is pos-
sible to guess a value for ηb when none is provided.
The classes of concepts that can be CN-learned with a
provided bound ηb are therefore exactly the same as the
ones that can be CN-learned without any knowledge on
an upperbound on η.

As for CPCN-learnability, introduced in (Decatur,
1997), this setting assumes a set of partition functions
Π = {π1, . . . , πk} defined on the labeled space X × Y
and taking values in {0, 1} such that

∑k
i=1 πi(〈x, y〉) =

1 for any pair 〈x, y〉 from X×Y and it assumes a CPCN
oracle as defined by Decatur (1997).

Definition 3 (CPCN oracle EXΠ,η
cpcn(c,D)). Let

Π = {π1, . . . , πk} a set of partition functions over
X ×Y and η = [η1 . . . ηk], with ηi ∈ [0; 1]. Given c ∈ C
and D ∈ D, the CPCN oracle EXΠ,η

cpcn(c,D) outputs a
labeled example 〈x, tη(x)〉 as follows:

(a) x is drawn according to D;

(b) if i is the index such that πi(〈x, t(x)〉) = 1 then

tη(x) :=
{

t(x) with prob. 1− ηi

¬t(x) with prob. ηi.

The next definition is that of CPCN-learnability (De-
catur, 1997).

Definition 4 (CPCN-learnability). A concept
class C is efficiently CPCN-learnable by representa-
tion class H iff there exist an algorithm A and poly-
nomials p(·, ·, ·) and q(·, ·, ·) such that for any set
Π = {π1, . . . , πk} of partition functions, for any η =
[η1 · · · ηk], with ηi ∈ [0; 1/2[, for any c ∈ C, for any
D ∈ D, for any ε > 0 and for any δ ∈]0; 1], when given
access to EXΠ,η

cpcn(c,D) and given inputs ε, δ and an
upper bound ηb < 0.5 on the noise rates ηi, A outputs
with probability at least 1− δ a hypothesis h ∈ H such
that errD(h) ≤ ε.

To output such an hypothesis A requires at most
p(1

ε , 1
δ , 1

1−2ηb
) training samples and it runs in

q(1
ε , 1

δ , 1
1−2ηb

) time.

CN=CPCN

X
η
−

η
+

c

X
η
−

η
+

c

Figure 1. Left: classical (noise free) concept learning set-
ting showing 26 positive examples (black discs) and 37 neg-
ative examples (white discs); η1 = 0 and η0 = 0. Right:
Class-Conditional Noise concept learning setting; the val-
ues of η1 and η0 might be η1 = 8/26 and η0 = 13/37.

In order to prove our main result, that is, CN =
CPCN, we will focus on the specific CPCN case where
Π = {π+, π−} and η = [η1 η0] with π+(x, y) = y and
π−(x, y) = 1 − y. A CPCN oracle EXΠ,η

cpcn defined
along this setting corresponds to the case where dif-
ferent classification noises are applied to positive and
negative examples, as illustrated on Figure 1. From
now on, we refer to the problem of learning in this par-
ticular framework, i.e., with Π = {π+, π−}, η = [η1 η0]
and the corresponding CPCN oracle, as the problem of
learning under Class-Conditional Classification Noise
(CCCN); the corresponding oracle will hence be de-
noted as EXη

cccn. CCCN-learnability is obviously de-
fined as in Definition 4.

3. CN=CCCN

The main theorem of this section states that the class
CN of concepts that are learnable under the uniform
classification noise model is the same as the class
CCCN of concepts that are learnable under the class-
conditional classification noise model:

Theorem 1. CCCN=CN

CCCN ⊆ CN is obvious: if c ∈ C is a concept from a
class C that is CCCN-learnable with any noise vector
η = [η1 η0] given a noise upper bound on ηb then it
is still learnable when η1 = η0, i.e. it is CN-learnable
(with the same noise upper bound ηb).

3.1. Sketch of the Proof

The proof of Theorem 1 proceeds in three steps. First,
we show (Lemma 1) that from noisy oracle EXη

cccn,
it is possible to construct another CCCN noisy oracle
EX η̄

cccn whose noise vector η̄ = [η̄1 η̄0] depends on two
’renoising’ control parameters ρ and s. In addition, we
observe that there exists a specific pair (ρopt, sopt) of
values that allows to turn a CCCN learning problem
into CN learning problem.

Secondly, we show (Lemma 2) that it suffices to know

Algorithm 1 FlipLabel
Input: ρ ∈ [0; 1], s ∈ {0, 1}, t ∈ {0, 1}
Output: tρ,s ∈ {0, 1}

Draw a random number r uniformly in [0; 1]
if s = t then

tρ,s := t
else

if r ≤ ρ then
tρ,s := 1− t

else
tρ,s := t

end if
end if
return tρ,s

a sufficiently accurate approximation ρ to ρopt (with
the correct setting of the corresponding s) to ’almost’
meet the requirements for PAC-learnability from the
CCCN-oracle.

Then, it is proved that knowing ηb < 0.5 such that
η1, η0 ≤ ηb makes it possible to learn any CCCN con-
cept that is CN-learnable (Proposition 1). This con-
cludes the proof of Theorem 1.

3.2. Formal Proof

Lemma 1. Let c ∈ C and D ∈ D. Let EXη
cccn(c,D)

be the CCCN oracle with noise vector η = [η1 η0]
with η1, η0 ∈ [0; 1]. Given parameters ρ ∈ [0; 1] and
s ∈ {0, 1}, the procedure that returns a pair 〈x, tη̄(x)〉
by (1) polling a labeled example 〈x, tη̄(x)〉 from EXη

cccn

and (2) setting tη̄(x) to FlipLabel(ρ, s, tη(x)) (cf.
Algorithm 1), simulates a call to a CCCN-oracle
EX η̄

cccn(c,D) of noise vector η̄ = [η̄1 η̄0] with η̄1, η̄0 ∈
[0; 1] and such that

η̄1 = (1− ρ)η1 + (1− s)ρ and η̄0 = (1− ρ)η0 + sρ.

Proof. Let c ∈ C, D ∈ D, ρ ∈ [0; 1] and, for sake of
exposition, suppose that s = 1.

The procedure described in the lemma together with
the way FlipLabel is defined (cf. Algorithm 1) are such
that P (tη̄(x) = 1|tη(x) = 1) = 1 and P (tη̄(x) =
1|tη(x) = 0) = ρ. Therefore, the probabilities of flip-
ping the class t(x) of a random example x to the op-
posite class 1− t(x) are given by (dropping the depen-
dence on x)

η̄1 = P (tη̄ = 0|t = 1)

= P (tη̄ = 0, tη = 0|t = 1) + P (tη̄ = 0, tη = 1|t = 1)

= P (tη̄ = 0|tη = 0)P (tη = 0|t = 1)

+ P (tη̄ = 0|tη = 1)P (tη = 1|t = 1)

= (1− ρ)η1,

CN=CPCN

and

η̄0 = P (tη̄ = 1|t = 0)

= P (tη̄ = 1, tη = 1|t = 0) + P (tη̄ = 1, tη = 0|t = 0)

= P (tη̄ = 1|tη = 1)P (tη = 1|t = 0)

+ P (tη̄ = 1|tη = 0)P (tη = 0|t = 0)

= ρ + η0(1− ρ),

which corresponds to the expressions for η̄1 and η̄0

provided in the lemma. It is straightforward to check
that when s = 0 we do also recover these expressions.

Checking that η̄1, η̄0 are in [0; 1] is straightforward:
both η̄1 and η̄0 are bounded from above by (1 −
ρ) max(η1, η0) + ρ, which, since 1 − ρ ≥ 0 and
max(η1, η0) ∈ [0; 1], is upper bounded by (1−ρ)+ρ =
1.

Remark 2. This lemma has the direct consequence
that it is possible to get a CN oracle from a CCCN
oracle as soon as the noise parameters of the CCCN
oracle are known. Indeed, if EXη

cccn(c,D) is a CCCN
oracle of known noise vector η = [η1 η0] then using
ρopt := |η1−η0|

1+|η1−η0| and setting sopt := 1 if η1 > η0

and 0 otherwise allows to obtain a CN oracle. This
CN oracle has its noise equal to ηopt := η̄1 = η̄0 =
max(η1,η0)
1+|η1−η0| .

Remark 3. If only an upper bound ηb < 0.5 is
known on the noise rates η1 and η0 of a CCCN ora-
cle EXη

cccn(c,D) then it is straightforward to see that
ρopt ≤ ηb and that the noise of the CN oracle ob-
tained from EXη

cccn(c,D) by adding noise to one of
the classes is also upper bounded by ηb.
Lemma 2. Let C be a concept class on X that is
CN-learnable by representation class H. Let Aη be
an algorithm that CN-learns C (with any noise rate
η ∈ [0; 1/2[); p(·, ·, ·) and q(·, ·, ·) are polynomials (in
1/ε, 1/δ, 1/(1− 2η), respectively) for Aη’s sample size
and time requirements.

Let η1, η0 ∈ [0; 0.5[be the (actual) unkown noise levels
for the positive class and the negative class. Assume
that we know a value ηb < 0.5 such that η1 ≤ ηb and
η0 ≤ ηb and that we know whether η1 ≥ η0.

There exists an algorithm A such that for any c ∈
C, for any D ∈ D, for any ε > 0, for any δ > 0,
for any ∆ ∈]0; 1], for ` := p(1/ε, 1/δ, 1/(1 − 2ηb) and
τ := ∆

2` , for any ρ ∈ [0; 1] verifying |ρ− ρopt| < τ , for
s := 1(η1≥η0), A, when given inputs ε, δ, ρ, s, Aη, `
and ηb and given access to EXη

cccn(c,D), outputs with
probability 1− δ −∆ a hypothesis h ∈ H verifying

errD(h) ≤ ε.

Algorithm 2 ApproximateLearn
Input: ε > 0, δ > 0, ρ ∈ [0; 1], s ∈ {0, 1}, Aη that

CN-learns C with q(·, ·, ·) running time, ` ∈ N, ηb ∈
[0; 1/2[

Output: h ∈ H

Build the CCCN oracle EX η̄
cccn(c,D) using ρ and s

as in Lemma 1
Draw a sample S = {〈x1, t

η̄(x1)〉, . . . , 〈x`, t
η̄(x`)〉}

of size ` from EX η̄
cccn(c,D)

Input S, ε and δ to Aη with the upper bound on η
set to ηb

if the running time of Aη gets longer than
q(1/ε, 1/δ, 1/(1− 2ηb)) then

stop Aη and return ∅
else

return the hypothesis h ∈ H output by Aη

end if

In order to output h, A requires a polynomial number
of labeled data and runs in polynomial time.

Proof. The idea of the proof is that if ρ is not too far
from ρopt and s is set to the correct value (either 0 or 1)
then the oracle resulting from the procedure specified
in Lemma 1 is ’almost’ a CN oracle and c can therefore
be learned under D by Aη.

Let us fix ε > 0, δ > 0, c ∈ C and D ∈ D. We assume,
without loss of generality, that η1 ≥ η0 and that, as a
consequence, the indicator function 1(η1≥η0) takes the
value 1. We also fix ρ such that |ρ− ρopt| < τ .

We show that a call to ApproximateLearn (cf. Algo-
rithm 2) with the inputs ε, δ, ρ, s, Aη, ` and ηb out-
puts with probabily 1−δ−∆ a hypothesis h ∈ H such
that err(h) ≤ ε.

We know from Remark 3 that ηopt, the noise of the CN
oracle obtained when using the procedure of Lemma 1
with ρopt and sopt, is bounded from above by ηb.
Therefore, ` set as in the lemma ensures that if Aη is
provided with ` labeled sample data from a CN-oracle
with noise lower than ηb, then it outputs with proba-
bility 1 − δ a hypothesis having error not larger than
ε. In addition, the running time to output such an hy-
pothesis will not exceed q(1/ε, 1/δ, 1/(1 − 2ηb)). The
following analysis, which builds on an idea of Goldberg
(2005), shows that it is possible with high probability
to draw from EXη

cccn samples of size ` that can be in-
terpreted as samples drawn from the CN oracle having
noise ηopt.

Given a sample S = {(x1, t(x1)), . . . , (x`, t(x`))}
drawn from noise free oracle EX(c,D) and param-

CN=CPCN

Algorithm 3 CorruptSample
Input: S = {(x1, t1), . . . , (x`, t`)} ∈ (X × {0, 1})`, η,

η̄ = [η̄1 η̄0]
Output: Sη = {(x1, t

η
1), . . . , (x`, t

η
`)},

S η̄ = {(x1, t
η̄
1), . . . , (x`, t

η̄
`)}

for i = 1, . . . , ` do
Draw a random number u uniformly in [0; 1]
/* noise process 1 */
if u ≤ η then

tηi := 1− ti
else

tηi := ti
end if
/* noise process 2 */
if u ≤ η̄ti then

tη̄ := 1− ti
else

tη̄ := ti
end if

end for
return (Sη,S η̄)

eters ηopt and η̄ as inputs, algorithm CorruptSam-
ple (cf. Algorithm 3) produces two labeled sam-
ples Sηopt = {(x1, t

ηopt(x1)), . . . , (x`, t
ηopt(x`)} and

S η̄ = {(x1, t
η̄(x1)), . . . , (x`, t

η̄(x`)}, which may be
noisy versions of S. It is important to note that

(a) the two processes that S undergoes in order to
give rise to Sηopt and S η̄ (cf. Algorithm 3) pre-
cisely simulate a CN noise process with noise pa-
rameter ηopt and a CCCN noise process with noise
parameter η̄ = [η̄1 η̄0], respectively (see Defini-
tions 1 and 3);

(b) the only way for Sηopt and S η̄ to differ is that
there exists (at least) an i such that tηopt(xi) 6=
tη̄(xi): this means that during the i-th itera-
tion of the main loop of CorruptSample, the ran-
dom uniform variate u fell either between η̄1 and
ηopt if t(xi) was equal to 1 (hence, only one of
tηopt(xi) and tη̄(xi) would be a flipped version of
t(xi)) or between η̄0 and ηopt if t(xi) was equal
to 0; dropping the dependence on i and using
p := P (t(x) = 1), the probability of observing
tηopt(x) 6= tη̄(x) is therefore

P (tηopt(x) 6= tη̄(x)) = p|η̄1 − ηopt|+ (1− p)|η̄0 − ηopt|.
(1)

From a broader perspective, EX(c,D) in combination
with CorruptSample – applied on labeled samples of
size ` drawn from EX(c,D) –, define a distribution
Dηopt,η̄(Sηopt ,S η̄) on (X × {0, 1})` × (X × {0, 1})`.
According to what we have just noted, the marginal

distributions Dηopt
(Sηopt) and Dη̄(S η̄) derived from

Dηopt,η̄(Sηopt ,S η̄) are exactly the distributions of sam-
ples of size ` from EX

ηopt
cn (c,D) and EX η̄

cccn(c,D), re-
spectively.

If we define ω(S) as the binary random variable that
is equal to 1 if S allows Aη to output an hypothe-
sis having error less than ε within the running time
specified in ApproximateLearn (cf. Algorithm 2) and 0
otherwise, we have:

PSη̄∼Dη̄

`
ω(Sη̄) = 0

´
= P(Sη,Sη̄)∼Dηopt,η̄

`
ω(Sη̄) = 0, ω(Sηopt) = 1

´
+ P(Sη,Sη̄)∼Dηopt,η̄

`
ω(Sη̄) = 0, ω(Sηopt) = 0

´
≤ P(Sη,Sη̄)∼Dηopt,η̄

`
ω(Sη̄) = 0, ω(Sηopt) = 1

´
+ δ

≤ P(Sη,Sη̄)∼Dηopt,η̄
(Sη̄ 6= Sηopt) + δ.

However, for (Sη,S η̄) distributed according to
Dηopt,η̄, the following holds true:

P (Sηopt 6= Sη̄) = P (t
ηopt

1 6= tη̄
1 ∨ . . . ∨ t

ηopt

` 6= tη̄
`)

≤ `P (tηopt(x) 6= tη̄(x)) (union bound)

= `
`
p|ηopt − (1− ρ)η1| (cf. (1))

+(1− p)|ηopt − η0 − ρ(1− η0)|
´

≤ `
`
|ρ− ρopt|η1 + |ρ− ρopt|(1− η0)

´
(Remark 2)

≤ ` (τ + τ) (assumption)

≤ ` · 2 ∆

2`
(definition of τ)

= ∆,

where t
ηopt

i := tηopt(xi), tη̄i := tη̄(xi).

The probability with which a random sample S η̄

of size ` generated from Dη̄, that is, polled from
EX η̄

cccn(c,D), prevents a successful learning is there-
fore bounded by δ + ∆. In other words, when given
access to a sample of size ` from EX η̄

cccn(c,D), as well
as other input parameters, Aη has henceforth a prob-
ability at least 1−δ−∆ to output a hypothesis having
error lower than ε.

Proposition 1. Any concept class that is efficiently
CN-learnable is also efficiently CCCN-learnable:
CN ⊆ CCCN.

More precisely, for every CN-learnable class there is
an algorithm A such that for any concept c and any
distribution D, for any ε > 0 and δ > 0, for any noise
vector η = [η1 η0] with η1, η0 ≤ ηb < 0.5, when given
access to EXη

cccn(c,D), A outputs with probability 1−δ
a hypothesis h such that errD(h) ≤ ε.

Proof. We note that this proposition closes the proof
of Theorem 1.

CN=CPCN

Algorithm 4 LearnWithUpperBound
Input: ε > 0, δ > 0, ηb < 0.5, Aη that CN-learns C

with p(·, ·, ·) sample size
Output: a hypothesis h ∈ H

H := ∅
∆ := δ

4
ε′ := ε

4 (1− 2ηb)
δ′ := δ

4
` := p(1

ε′ ,
1
δ′ ,

1
1−2ηb

)
τ := ∆

2`
for all s ∈ {0, 1} and i ∈ N such that iτ < ηb do

ρi := iτ
H := H∪{ApproximateLearn(ε′, δ′, ρi, s,Aη, `, ηb)}

end for
m := 8

ε2(1−2ηb)2
ln 16`

δ2

draw a sample Sη
m of m labeled examples from

EXη
cccn(c,D)

return argminh∈H errSη
m

(h)

In order to prove this lemma, it suffices to see that al-
gorithm LearnWithUpperBound (cf. Algorithm 4) can
CCCN-learn any concept c from a class that is CN-
learnable under any distribution D when given an up-
per bound ηb < 0.5 on η1 and η0.

Let us fix c ∈ C, D ∈ D, ε > 0, δ > 0 and let us assume
that we know ηb.

From the way τ is set, the double loop of LearnWithUp-
perBound ensures that there is a pair (ρ∗, s∗) of values
such that ρ∗ is within a distance of τ from ρopt and
s∗ = sopt. Hence, by applying lemma 2, we know that
there is with probability at least 1−δ/4−δ/4 = 1−δ/2
a hypothesis h∗ such that err(h∗) ≤ ε

4 (1− 2ηb).

There is a need for a strategy capable with high proba-
bility to pick from H a hypothesis that has error lower
than ε. Simple calculations give, for any h:

P (h(x) 6= tη(x)) = pη1 + (1− p)η0

+ (1− 2η1)P (h(x) = 1, t(x) = 0)

+ (1− 2η0)P (h(x) = 0, t(x) = 1),

where, as earlier, p stands for P (t(x) = 1). Conse-
quently, for any ε-bad hypothesis h, that is, any hy-
pothesis having error larger than ε, we have

P (h(x) 6= tη(x)) > pη1 + (1− p)η0 + ε(1− 2ηb). (2)

Besides, P (h∗(x) 6= t(x)) ≤ ε
4 (1− 2ηb) implies

P (h∗(x) = 1 6= t(x) = 0) ≤ ε

4
(1− 2ηb)

P (h∗(x) = 0 6= t(x) = 1) ≤ ε

4
(1− 2ηb),

and, therefore

P (h∗(x) 6= tη(x))

≤ pη1 + (1− p)η0 +
ε

4
(1− 2ηb) · 2(1− η1 − η0)

≤ pη1 + (1− p)η0 +
ε

2
(1− 2ηb). (3)

Equations (2) and (3) say that there is a gap of at least
ε
2 (1−2ηb) between the error (on noisy patterns) of any
ε-bad hypothesis and the error (on noisy patterns) of
h∗. There is henceforth a size m of test sample Sη

m such
that the empirical errors measured on Sη

m of all ε-bad
hypotheses are far enough from the empirical error of
h∗, i.e., for any εcut (strictly) within the bounds of (2)
and (3), there is a size m of test sample that guarantees
(with high probability) that the empirical errors on
Sη

m of all ε-bad hypotheses are above εcut while the
empirical error of h∗ on Sη

m is below εcut.

Letting εcut := pη1 + (1− p)η0 + 3ε
4 (1− 2ηb), Hbad :=

{h ∈ H : err(h) > ε} and Gη
m,εcut

:= {h ∈ H :
errSη

m
(h) ≤ εcut}, we have

P (∃h ∈ Hbad ∩Gη
m,εcut

) ≤ |Hbad|P (h ∈ Hbad ∩Gη
m,εcut

)

(union bound)

≤ |H| exp

„
−mε2(1− 2ηb)

2

8

«
(Chernoff bound)

≤ 1

2τ
exp

„
−mε2(1− 2ηb)

2

8

«
.

In order to have P (∃h ∈ Hbad ∩ Gη
m,εcut

) ≤ δ/4, it
suffices to choose m so that the right-hand side of the
last inequation is bounded from above by δ/4, i.e., it
suffices to have

m =
8

ε2(1− 2ηb)2
ln

16`

δ2

as it is set in LearnWithUpperBound.

Likewise, for h∗, we have

P (h∗ 6∈ Gη
m,εcut

) ≤ exp

„
−mε2(1− 2ηb)

2

8

«
(Chernoff bound)

≤ 2τ
δ

4
= 2 · δ

8`
· δ

4

≤ δ

4

for the specific choice of m made.

It directly follows that the hypothesis hmin from H
that minimizes the empirical error on Sη

m – for the
given value of m – is, with probability at least 1 −
δ/4 − δ/4 = 1 − δ/2, a hypothesis that has true error

CN=CPCN

lower than ε. (We note that, though it may possibly
be the case, hmin need not be h∗.)

All in all, we have that when given an upper bound on
η1 and η0, and given access to a polynomial number
of labeled data, LearnWithUpperBound outputs with
probability at least 1 − δ a hypothesis with error at
most ε. In addition, since ApproximateLearn controls
its running time the running time of LearnWithUpper-
Bound is polynomial as well. This closes the proof of
Proposition 1.

4. CPCN=CCCN=CN

In this section we provide a result showing the equal-
ity between CPCN and CCCN. This directly gives the
main result of this paper, namely CN = CPCN.

The idea of the proof is that it is possible to build a
partition of the input space X from the partition func-
tions of a CPCN oracle (which define a partition over
S×{0, 1}): this partition is such that the noise process
that corrupts the data within each part is a CCCN
noise process. Given a CCCN learning algorithm A
and some condition as for the number of data to draw
from the CPCN oracle to be sure that each part con-
tains enough (or no) data to be CCCN-learned, hy-
potheses are learned on each part. These hypotheses
are used to relabel a CPCN sample of an appropriate
size, which is in turn input to A to output with high
probability a hypothesis having small error.

Lemma 3. Let c ∈ C and D ∈ D. Let h be a classifier
that has error errD(h) ≤ ε. Then, for any α ∈]0; 1]
and any integer ` ≤ α/ε, the probability that h cor-
rectly predicts the labels of the elements of a sample of
size ` drawn according to D is greater than 1− α.

Proof. The probability that h correctly predicts the
class of ` elements independently drawn according to
D is greater than (1 − ε)`. It can be easily checked
that for any 0 ≤ ε ≤ 1, (1− ε)` ≥ 1− `ε ≥ 1− α.

Lemma 4. Let D ∈ D. Let π1, . . . , πk be a partition
of X , let 0 < ε, δ ≤ 1 be two parameters, let m be an
integer and let ` ≥ max(2m/ε,−2 log (δ/k)/ε2). Then,
with a probability greater than 1−δ, any sample S of X
containing ` examples independently drawn according
to D will contain at least m elements of each part πi

that satisfies D(πi) ≥ ε, with D(πi) := Px∼D(πi(x) =
1).

Proof. We note that the partition π1, . . . , πk is defined
with respect to the unlabeled space X .

Let ` ≥ max(2m/ε,−2 log (δ/k)/ε2), let S be a sample
containing ` examples independently drawn according

to D, and let mi := |S ∩ πi)|. It comes from Chernoff
bound and the way ` is chosen that, for any 1 ≤ i ≤ k,

P
“mi

`
≤ D(πi)−

ε

2

”
≤ exp

„
− `ε2

2

«
≤ δ

k
.

Hence, if πi is such that D(πi) ≥ ε,

P (mi ≤ m) ≤ P
“
mi ≤ `

ε

2

”
≤ δ

k
.

By the union bound

P (∃i : mi ≤ m, D(πi) ≥ ε) ≤ kP ((mi ≤ m), D(πi) ≥ ε)

= k · δ

k
= δ.

Therefore, with probability greater than 1 − δ, any
part πi such that D(πi) ≥ ε satisfies mi > m.

Proposition 2. Let C be a class of concepts over X
which is in CCCN. Then C is in CPCN. Stated other-
wise: CCCN ⊆ CPCN .

Proof. Let A be a CCCN learning algorithm for C and
let p(·, ·, ·) be a polynomial such that for any target
concept c in C, any distribution D ∈ D, any accuracy
parameter ε, any confidence parameter δ and any noise
rate bound ηb, if A is given as input a sample S drawn
according to EXη

cccn(c,D) (where η = [η1 η0] and
η1, η0 ≤ ηb) and satisfying |S| ≥ p(1/ε, 1/δ, 1/(1 −
2ηb)), then A outputs a hypothesis whose error rate is
lower than ε with probability at least 1− δ.

Let Π = {π1, . . . , πk} be a partition of X × {0, 1} and
let η = [η1 · · · ηk] be a vector of noise rates satisfying
0 ≤ ηi ≤ ηb for 1 ≤ i ≤ k. We deduce from Π a
partition Π = (π1, . . . , πl) of X based on the parts πij

defined for 1 ≤ i, j ≤ k, by πij = {x ∈ X |〈x, 1〉 ∈
πi and 〈x, 0〉 ∈ πj}. (It is straightforward to check
that for any x ∈ X , there exist i and j such that
x ∈ πij and that πij ∩ πuv 6= ∅ implies i = u and
j = v.) For any πi ∈ Π such that πi = πuv, define
η1

i := ηu and η0
i := ηv.

Let c ∈ C, let D ∈ D and let 0 < ε, δ ≤ 1 be accuracy
and confidence parameters.

Let n1 ≥ p(1/ε, 4/δ, 1/(1 − 2ηb)), let ε1 := δ/(4ln1),
let m := p(1/ε1, 4l/δ, 1/(1 − 2ηb)) and let n2 ≥
max(2m/ε1,−2 log (δ/(4l))/ε2

1). Note that n2 is poly-
nomial in 1/ε, 1/δ and 1/(1− 2ηb).

Let S2 be a sample of size n2 drawn according to
EXΠ,η

cpcn(c,D). From Lemma 4, with probability at
least 1− δ/4, any part πi such that D(πi) ≥ ε1 satis-
fies |S2 ∩ πi| > m. Let I := {i : |S2 ∩ πi| > m}.

For each i ∈ I, run algorithm A on each sample
S2 ∩ πi and let hi be the output classifier. With a

CN=CPCN

probability greater than 1 − δ/4, each hi is such that
PD|πi(x)=1(hi(x) 6= t(x)) ≤ ε1.

Now, let S1 be a new sample of size n1 drawn according
to EXΠ,η

cpcn(c,D).

• Let πi be a part such that D(πi) < ε1. The
probability that S1 contains no element of πi is
≥ (1− ε1)n1 ≥ 1− δ/(4l).

• Let πi be a part such that D(πi) ≥ ε1. From
Lemma 3, the probability that hi computes the
correct label of each example of S1 ∩ πi is greater
than 1− δ/(4l).

That is (using the union bound) the probability that
S1 contains no element of a part πi satisfying D(πi) <
ε1 and that all elements of S1 are correctly labeled by
hypotheses (hi)i∈I is greater than 1− δ/4.

Finally, relabel the examples of S using the predictions
given by hypotheses (hi)i∈I and run algorithm A on
the relabeled sample S̃1. With a probability greater
than 1 − δ/4, it will output a hypothesis h such that
errD(h) ≤ ε.

Taking everything together, the overall procedure out-
puts with probability 1− 4 · δ/4 = 1− δ a hypothesis
h that has error errD(h) ≤ ε.

We can therefore state the main result of this paper:
Theorem 2. CN=CCCN=CPCN.

Proof. From the previous section, we know that CN =
CCCN. In this section, we showed that CCCN ⊆
CPCN and, since CPCN ⊆ CCCN (the CCCN
framework is a particular case of the CPCN frame-
work), CPCN = CCCN. This trivially gives CN =
CPCN.

5. Bounds on the Noise Rates

In this study, we have restricted ourselves to the case
where the upper bound ηb on the noise rates is stricly
lower than 1/2. It can be shown that it is possible
to address the case where instead of having an upper
bound on the noise rates, a lower bound ηl

b > 0.5 is
provided. Whichever the oracle to which the learning
procedure is given access, it suffices to flip all the labels
of the labeled examples it produces. Doing that brings
the learning problem considered back to the classical
setting where the upper bound on the noise rates is
now 1 − ηl

b. The question of the learnability in the
CPCN (or CCCN) framework in the more general case
where some noise rates may be above 0.5 and some
other below is still an open problem.

Another open question is that of the need of having
an upper bound on the noise rates. Even though it is
known that in the CN framework such a bound can be
estimated (in polynomial time) through the learning
process, it is not clear whether such an (distribution
free) estimation can be carried out for the CCCN and
CPCN cases.

6. Conclusion and Outlook

This paper presents a particular case of the learnability
in the PAC-framework, where classes of examples are
subject to various classification noise settings and we
give two important results, namely, CN=CCCN and
CN=CPCN.

An interesting outlook of this work is that of its ap-
plication to the learning of noisy perceptrons (Blum
et al., 1996; Cohen, 1997) in the CPCN framework.
The question of the consequences of our work on the
problem of learning optimal separating hyperplanes
(in finite dimension as well as in infinite dimensional
spaces) with soft-margins is also a problem we are in-
terested in and that we plan to investigate.

References

Angluin, D., & Laird, P. (1988). Learning from Noisy
Examples. Machine Learning, 2.

Blum, A., Frieze, A. M., Kannan, R., & Vempala, S.
(1996). A Polynomial-Time Algorithm for Learning
Noisy Linear Threshold Functions. Proc. of 37th
IEEE Symposium on Foundations of Computer Sci-
ence (pp. 330–338).

Cohen, E. (1997). Learning Noisy Perceptrons by
a Perceptron in Polynomial Time. Proc. of 38th
IEEE Symposium on Foundations of Computer Sci-
ence (pp. 514–523).

Decatur, S. E. (1997). Pac Learning with Constant-
Partition Classification Noise and Applications to
Decision Tree Induction. Proc. of the 14th Int. Conf.
on Machine Learning.

Goldberg, P. (2005). Some Discriminant-based PAC
Algorithm. Personal communication.

Kearns, M. J., & Vazirani, U. V. (1994). An Introduc-
tion to Computational Learning Theory. MIT Press.

Valiant, L. (1984). A theory of the learnable. Com-
munications of the ACM, 27, 1134–1142.

