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Résumé : Nous étudions comment inférer des classifieurs naı̈fs de Bayes lorsque
les classes des exemples sont sujettes à un bruit de classification conditionnel
à chaque classe (CCCN pour class-conditional classification noise). Les clas-
sifieurs naı̈fs de Bayes font l’hypothèse que la distribution sous-jacente est un
mélange de distributions produits associées à chacune des classes. Ces distribu-
tions sont efficacement apprenables à partir de données étiquetées. Mais lors-
qu’un bruit CCC est ajouté aux données, les distributions associées à chaque
classe sont elles-mêmes des mélanges de distributions produits. Nous établissons
des formules analytiques qui permettent d’identifier les distributions associées à
chacune des classes à partir de données sujettes à du bruit CCC. Nous déduisons
de ces formules un algorithme d’apprentissage capable d’apprendre des classi-
fieurs naı̈fs de Bayes en présence de bruit de classification conditionnel à chaque
classe. Nous présentons des résultats sur des données artificielles et des données
issues de l’UCI. Ces résultats montrent que le bruit CCC peut être efficacement
détecté et éliminé des données.

1 Introduction
Naive Bayes classifiers are widely used in Machine Learning. Indeed, they can effi-

ciently be learned, they provide simple generative models of the data and they achieve
pretty good results in various classification tasks such as text classification. Naive Bayes
classifiers rely on the hypothesis that the attributes of the description domain are inde-
pendent conditionally to each class, i.e. conditional distributions are product distribu-
tions, but it has often been noticed that they keep achieving good performances even
when these conditions are not met (Domingos & Pazzani, 1997). Nevertheless, Naive
Bayes classifiers are not very robust to classification noise since independence of the
attributes is not preserved.

In this paper, we address the problem of efficiently learning binary Naive Bayes clas-
sifiers under class-conditional classification noise (CCCN), i.e. when the label l of any
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example is flipped to 1 − l with a probability ηl which only depends on l. Eliminating
class noise in datasets has been studied in several papers (see (Zhu et al., 2003) for
a general approach and (Yang et al., 2003) for an approach dedicated to Naive Bayes
classifiers : however, the model of noise the authors consider in the last reference is not
comparable to the model we consider). When data is subject to CCC-noise, conditio-
nal distributions become mixtures of product distributions. Mixtures of product distri-
butions are still fairly simple distributions which have been studied in several papers
(Geiger et al., 2001; Whiley & Titterington, 2002; Freund & Mansour, 1999; Feldman
et al., 2005). In particular, mixtures of product distributions can be identified from data
under some mild hypotheses. However, these results are not very useful in order to learn
Bayes classifiers under CCC-noise : indeed, they make it possible to estimate the mix-
ture coefficients by using each conditional distribution separately, providing estimators
whose convergence rates are rather slow, while it should be possible to use them to-
gether to obtain better and faster estimates. In this paper, we aim at finding efficient
estimates based on the available data in the CCCN learning framework.

We give analytical formulas which express the mixtures coefficients of the conditio-
nal distributions in function of the noisy conditional distributions. We use these for-
mulas to design efficient estimators for the mixture coefficients. We also show how
these formulas can be used to estimate the parameter P (y = 1) in an asymetrical
semi-supervised learning framework, where the available data is made of unlabeled
and positive examples (i.e. from one class). Next, we use these estimators to design an
algorithm, NB-CCCN capable of learning a Naive Bayes classifier from labeled data
subject to CCC-noise. We also design a learning algorithm NB-CCCN-EM which com-
bines NB-CCCN and the E.M. method : NB-CCCN-EM starts by computing a Naive
Bayes classifier by using NB-CCCN and then, uses the E.M. method to maximize the
likelihood of the learning data.

We carry out experiments on both artificial data generated from randomly drawn
Naive Bayes classifiers and data from the UCI repository. We compare four learning
algorithms : the classical Naive Bayes learning algorithm (NB), an algorithm (NB-UNL)
which directly estimates the mixture coefficients from unlabeled data by using analy-
tical formulas taken from (Geiger et al., 2001), NB-CCCN and NB-CCCN-EM. These
experiments show that when CCC-noise is added to data, NB-UNL, NB-CCCN and
NB-CCCN-EM succeed in eliminating the additional noise from data, achieving per-
formances which are close to the performances they reach on non-noisy data. The two
latter algorithms are far better than NB-UNL. Obviously, NB-CCCN-EM achieves better
performance than NB-CCCNwhen the comparison criterion is the likelihood of the data.
This property entails that NB-CCCN-EM achieves better performance than NB-CCCN
on classification tasks on artificial data drawn from noisy product distributions, since
in that case, maximizing the likelihood is a good heuristic for classification. However,
NB-CCCN achieves better performance than NB-CCCN-EM on real data.

A discussion on supervised learning under class-conditional classification noise is
carried out in Section 3. We define the notion of identifiability under class-conditional
classification noise and we relate it to the identifiability of mixtures of distributions. We
give the analytical formulas which express the mixtures coefficients of the conditional
distributions in function of the noisy conditional distributions in Section 4. We also
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describe in Section 4 the estimators of these coefficients and the algorithms NB-CCCN,
NB-CCCN-EM and NB-UNL. Our experiments are described in Section 5.

2 Preliminaries

2.1 The naive Bayes classifier

Let X =
m∏
i=1

X i be a domain defined by m symbolic attributes. For all x ∈ X , let us

denote by xi the projection of x onX i and let us denote byDom(xi) the set of possible
values of xi. Let P be a probability distribution overX and let Y = {0, 1} be the set of
classes. Y is provided with conditional probability distributions P (.|x) for all x ∈ X .

When attributes are independent conditionally to each class, thenP (x|y) =
m∏
i=1

P (xi|y)

is a product distribution over X for any y ∈ Y . In such a case, the Bayes classifier is
equal to the naive Bayes classifier CNB defined by :

CNB(x) = argmax
y∈Y

P (y)

m∏

i=1

P (xi|y) (1)

Naive Bayes classifiers are specified by the following set of parameters : p = P (y =
1), P i+(k) = P (xi = k|y = 1) and P i−(k) = P (xi = k|y = 0) where 1 ≤ i ≤ m and
k ∈ Dom(xi). An instance of these parameters is called a model and is denoted by θ.

2.2 Identifying mixture of product distributions
Let P be a set of distributions over X . We say that the 2-mixtures of elements of P

are identifiable if for any P1, P2, P
′
1, P

′
2 ∈ P and any α, α′ ∈ [0, 1] :

αP1 + (1− α)P2 = α′P ′1 + (1− α′)P ′2
⇒ α′ = α, P ′1 = P1, P

′
2 = P2 or α′ = 1− α, P ′1 = P2, P

′
2 = P1

A necessary and sufficient condition for identifiability of finite mixtures has been
given in (Yakowitz & Spragins, 1968). Identifiability of finite mixtures of product
distributions has been proved in (Geiger et al., 2001; Whiley & Titterington, 2002)
(under mild conditions). Learning of product distributions has been studied in (Freund
& Mansour, 1999) and more recently in (Feldman et al., 2005).

As we shall use it in the experiments, let us give without proof and explanations
some details on the way mixture of two product distributions on binary attributes are
identified in (Geiger et al., 2001). The following formulas hold when the number of
attributes is at least tree.

Let P be a mixture of two product distributions P (.|y = 0) and P (.|y = 1) overX =
{0, 1}r where the mixture coefficient is α = P (y = 1). Let zij...r = P (xi = 1, xj =
1, ..., xr = 1), pi = P (xi = 1|y = 1), qi = P (xi = 1|y = 0), and α = P (y = 1).
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Therefore zij...r = αpipj ....pr + (1−α)qiqj ...qr. Let s, x1, ..., xm, u1, ..., um be the
new coordinates after the following transformation :

α = (s+ 1)/2, pi = xi + (1− s)ui, qi = xi − (1 + s)ui (2)

A second transformation on coordinates z is recursively defined as follows : zij ←
zij − zizjzijr ← zijr − zijzr − zirzj − zjrzi − zizjzr and so forth

Then, x, u, s can be computed as follows :

xi = zi

u1 = ±
√
z12z13z23 + (z123)2/4/z23

s = −z123/(2u1z23)

ui = z1i/(p2(s)u1) for i > 1 with p2(s) = 1− s2.

and the parameters of P can be computed using (2). In Section 4.5, we propose an
algorithm based on these formulas to compute naive Bayes models from unlabeled data.

3 Supervised statistical learning under class-conditional
classification noise

Let X be a discrete domain, and let Y = {0, 1}. In supervised statistical learning, it
is supposed that examples (x1, y1), . . . , (xl, yl) are independently and identically dis-
tributed according to a probability distribution P overX×Y . Then, the goal is to build
a classifier f : X → Y which minimizes the functional risk R(f) = P (y 6= f(x)), i.e.
which approximates the Bayes classifier f ∗ defined by f∗(x) = ArgMaxyP (y|x).

Here, we consider the case where the examples are submited to an additional
class conditional classification noise. That is, we suppose that the examples are
independently drawn according to the probability distribution P

−→η defined by
P
−→η (x, 1) = (1−η1)P (x, 1)+η0P (x, 0) and P

−→η (x, 0) = η1P (x, 1)+(1−η0)P (x, 0)
where −→η = (η0, η1) ∈ [0, 1]2. However, our goal remains the same as in the original
problem : minimizing the risk relative to P . For any distribution Q on X × Y such
that Q(1) =

∑
x∈X Q(x, 1) ∈]0, 1[, let us denote by Q+ (resp. Q−) the distribution

defined on X by Q+(x) = Q(x, 1)/Q(1) (resp. Q−(x) = Q(x, 0)/Q(0) where
Q(0) = 1−Q(1)).

Note that if we let P ′(x, y) = P (x, 1 − y), η′0 = 1 − η1 and η′1 = 1 − η0, the

distributions P
−→η and P ′

−→
η′ are identical while the Bayes classifiers associated with

P and P ′ are complementary. Hence, we shall suppose that η0 + η1 ≤ 1 to raise
ambiguity. Note also that when η0 + η1 = 1, P

−→η
+ (x) = P

−→η
− (x) = P (x) and therefore,

nothing better can be done than predicting the labels randomly. So, we shall suppose
from now that η0 + η1 < 1.
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It may happen that Bayes classifiers are identical for the two distributions P and P
−→η :

P
−→η (1|x) ≥ P−→η (0|x)⇔ (1− η1)P (1|x) + η0P (0|x) ≥ (1− η0)P (0|x) + η1P (1|x)

⇔ (1− 2η1)P (1|x) ≥ (1− 2η0)P (0|x)

When the classification noise is uniform (i.e. η0 = η1) and < 1/2, the distributions
P and P

−→η define the same Bayes classifier. This is also the case when the problem is
deterministic, i.e. P (1|x) = 0 or P (0|x) = 0 and η0, η1 < 1/2.

In all these cases, the strategy which consists in minimizing the empirical risk is as
consistent for one distribution as for the other. But when the Bayes classifiers do not
coincide, another strategy should be taken.

Let us compute R
−→η (f) = P

−→η (f(x) 6= y) for any classifier f : X → Y . Let us
denote pf = P (f(x) = 1).

R
−→η (f) = P

−→η ((x, 1)|f(x) = 0) · (1− pf ) + P
−→η ((x, 0)|f(x) = 1) · pf

= [(1− η1)P ((x, 1)|f(x) = 0) + η0P ((x, 0)|f(x) = 0)] · (1− pf )

+ [(1− η0)P ((x, 0)|f(x) = 1) + η1P ((x, 1)|f(x) = 1)] · pf
= (1− pf )[(1− η0 − η1)P ((x, 1)|f(x) = 0) + η0]

+ pf [(1− η0 − η1)P ((x, 0)|f(x) = 1) + η1]

= (1− η0 − η1)R(f) + η1 · pf + η0 · (1− pf ).

Therefore, we need to minimize

R(f) =
R
−→η (f)− η1pf − η0(1− pf )

1− η0 − η1
(3)

which does not boil down to minimizing R
−→η (f) and can be a difficult task since in

general, we may not suppose that the noise rates are known.

Consider a simple example : let X = {a}, let P1 be such that P1(0|a) = 1/3,
−→η1 = (0, 0), P2 be such that P2(0|a) = 2/3 and −→η2 = (1/2, 0). We have P

−→η1

1 = P
−→η2

2

while the Bayes classifiers associated with P1 andP2 are complementary. Therefore, the
problem seems to be ill-posed when the Bayes classifiers are different for P and P

−→η .
However, when the underlying distribution P is known to belong to some restricted set
of distributions P , the problem may be feasible.

Definition 1
Let P be a set of distributions over X × Y . We say that P is identifiable under class
conditional classification noise if for any P ∈ P , any noise rates η0 and η1 satisfying
η0 + η1 < 1, P

−→η determines P , i.e. ∀P1, P2 ∈ P , ∀−→η 1 = (η0
1 , η

1
1),−→η 2 = (η0

2 , η
1
2) ∈

[0, 1]2 such that η0
1+η1

1 < 1 and η0
2+η1

2 < 1,P
−→η 1

1 = P
−→η 2

2 ⇒ P1 = P2 and −→η 1 = −→η 2.
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Let

p = P (y = 1) =
∑

x∈X
P (x, 1). (4)

We have {
P
−→η
+ (x) = αP+(x) + (1− α)P−(x)

P
−→η
− (x) = βP+(x) + (1− β)P−(x)

(5)

where

α =
p · (1− η1)

p · (1− η1) + (1− p)η0
and β =

p · η1

p · η1 + (1− p) · (1− η0)
(6)

P
−→η
+ (x) and P

−→η
− (x) are mixtures of the two distributions P+(x) and P−(x).

Lemma 1
Let P be a probability distribution over X × Y , let −→η = (η0, η1) ∈ [0, 1]2 such that
η0 + η1 < 1 and let p, α and β be defined by (4) and (6). Then,

– (α = 0⇔ p = 0)⇒ β = 0,
– (β = 1⇔ p = 1)⇒ α = 1,
– (α = β)⇔ (p = 0 ∨ p = 1).

Proof. Straightforward. �
It can easily be derived from previous equations that

η0 =
(p− β)(1− α)

(1− p)(α− β)
and η1 =

β(α− p)
p(α− β)

. (7)

These relations show that even if α and β are known, the values of p, η0 and η1 are
not determined yet : for any p ∈ [min(α, β),max(α, β)] there exist some values of η0

and η1 which are consistent with the data. However, it is easy to show the following
proposition.

Proposition 1
Let P be a class of distributions overX × Y and letQ = {P (·|y)|y = 0 or y = 1, P ∈
P}. If the 2-mixtures ofQ are identifiable, thenP is identifiable under class conditional
classification noise.

Proof. Let P ∈ P and η0, η1 be noise rates satisfying η0 + η1 < 1. There exist unique
mixture coefficients such that P

−→η
+ (x) = αP+(x) + (1 − α)P−(x) and P

−→η
− (x) =

βP+(x) + (1− β)P−(x). We have

P
−→η (1) = (1− η1)p+ η0(1− p) =

α(p− β)

α− β +
(1− α)(p− β)

α− β =
p− β
α− β

and therefore
p = β + (α− β)P

−→η (1). (8)

Then, equations (7) determine η0 and η1. �
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4 Learning mixtures of product distributions under class
conditional classification noise

From previous section, the set of 2-mixtures of product distributions is identifiable
from class conditional classification noise. That is, Naive Bayes classifiers can be lear-
ned from data subject to class conditional classification noise. But, estimating the mix-
ture coefficients by using data from P

−→η
+ and P

−→η
− separetely provides estimators whose

convergence rates are very low. We show below that, by using data drawn according
to P

−→η , we obtain simple and efficient estimates of the mixture coefficients and of the
parameters which depend on them.

4.1 Analytical expressions for mixture coefficients

Let P1 and P2 be two product distributions over X1 × X2, let x1 and x2 be the
attributes corresponding to X1 and X2. For any distribution Q over X1 × X2, any
i = 1, 2 and any c ∈ Xi, let us denoteQ(xi = c) byQi(c). LetQα = αP1 +(1−α)P2

and Qβ = βP1 + (1 − β)P2 be two mixtures of P1 and P2. Suppose that α 6= β. We
can express P1 and P2 as linear combination of Qα and Qβ :

{
(α− β)P1 = (1− β)Qα − (1− α)Qβ
(α− β)P2 = αQβ − βQα (9)

Let (a, b) ∈ X1 ×X2. We have

Qα(a, b) = αP1(a, b) + (1− α)P2(a, b)

= αP 1
1 (a)P 2

1 (b) + (1− α)P 1
2 (a)P 2

2 (b)

and then, by replacing P1 and P2 with the expressions provided by equations (9), we
obtain after simplifications

(α− β)2D = α(1− α)C (10)

where C = (Q1
α(a) − Q1

β(a))(Q2
α(b) − Q2

β(b)) and D = Qα(a, b) − Q1
α(a)Q2

α(b).
Similarly, we have

(α− β)2E = β(1− β)C (11)

where E = Qβ(a, b)−Q1
β(a)Q2

β(b).

If β = 1 or β = 0, (10) can be used to directly compute α :

α =

{ D
D+C if β = 1
C

D+C if β = 0
(12)
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Suppose now that β(1 − β) 6= 0. From (10), we get α2 = αC−βD(β−2α)
C+D . Re-

placing α2 with this expression in (11), we obtain an expression of α as a function of β :

α = β · (1− β)(C +D)− βE
E(1− 2β)

(13)

Now, replacing α with this expression in (11), we obtain

β · (1− β) · (β2 − β + λβ) = 0 (14)

where λβ = CE
(C+D+E)2−4DE . Since β(1− β) 6= 0,

β ∈
{

1 +
√

1− 4λβ

2
,

1−
√

1− 4λβ

2

}
(15)

which provides the two admissible solutions (α1, β1) and (α2, β2) to the problem. Note
that α2 = 1− α1 and β2 = 1− β1.

We have proved the following proposition :

Proposition 2
LetQα = αP1 +(1−α)P2 andQβ = βP1 +(1−β)P2 be mixtures of the product dis-
tributions P1 and P2. Suppose that α 6= β. Then, (12), (13) and (15) provide analytical
expressions of the mixture coefficients α and β.

4.2 Learning Bayes classifiers from positive and unlabeled data
A particular semi-supervised learning framework suppose that available samples are

unlabeled or labeled according to some predefined class, that may be called the positive
class (see (DeComité et al., 1999; Denis et al., 2003; Li & Liu, 2003; Li & Liu, 2005)
). That is, it is supposed that two sources of data provide sample according to the two
following distributions over X : P (x) = P (x, 0) + P (x, 1) and P (x|1). In this fra-
mework, a critical parameter is P (y = 1) : often, it is supposed that it is given, as an
additional piece of information on the problem. Proposition 2 shows that when Naive
Bayes classifiers are used in this framework, the parameter P (x|1) can be estimated
from data according to equation (12).

Corollary 1
Let P be a distribution overX × Y such that P+ and P− are product distributions over
X . Let x1 and x2 be two different attributes, let a ∈ Dom(x1), b ∈ Dom(x2) and let
us denote P (x1 = a, x2 = b) by P 1,2(a, b) , P (xi = c, 0) + P (xi = c, 1) by P i(c)
and P (xi = c|1) by P i(c|1) for any c ∈ Dom(xi). Then,

P (y = 1) =
P 1,2(a, b)− P 1(a|1)P 2(b|1)

P 1,2(a, b) + P 1(a)P 2(b)− P 1(a)P 2(b|1)− P 1(a|1)P 2(b)
(16)
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Proof . Let Qα(x) = P 1,2(x) = P 1,2(x|1)P (y = 1) + P 1,2(x|0)P (y = 0) and
Qβ(x) = P 1,2(x|1) : Qα is a mixture of the two product distributions P 1,2(x|1) and
P 1,2(x|0) with P (y = 1) as mixture coefficient. We have also β = 1. Formula 12
yields the formula stated in the corollary. �

A consistent estimator of P (y = 1) can be derived from equation 16. From any
samples Sunl and Spos of unlabeled and positive data, consider equation 16 for all or
some pair of attributes and all or some of their values :

P̂ (y = 1) =

∑
P̂ i,j(a, b)− P̂ i(a|1)P̂ j(b|1)∑

P̂ i,j(a, b) + P̂ i(a)P̂ j(b)− P̂ i(a)P̂ j(b|1)− P̂ i(a|1)P̂ j(b)
(17)

where the sums are taken over all attributes i, j and values a ∈ Dom(xi) and b ∈
Dom(xj). Note that Formula (16) and estimator (17) were given in (Magnan, 2005).

4.3 Learning Bayes classifiers under class conditional classification
noise

Equations (14) and (13) can be used to efficiently identify Naive Bayes classifiers
under class conditional classification noise : let x1 and x2 be two attributes of X , let
X1 = Dom(x1) and X2 = Dom(x2), let P1 and P2 be defined on X1 × X2 by
P1(a, b) = P+(x1 = a, x2 = b), P2(a, b) = P−(x1 = a, x2 = b), Qα(a, b) =

P
−→η
+ (x1 = a, x2 = b) and Qβ = P

−→η
− (x1 = a, x2 = b).

Two pairs (α1, β1) and (α2, β2) of admissible solutions are computed using equations
(15) and (13) ; for each pair, p, η0 and η1 are computed using equations (8) and (7). Only
one of these solutions satisfies η0 + η1 < 1.

Algorithm 1 NB-CCCN : learn a Naive Bayes classifier from data subject to class-
conditional classification noise
Input: S

−→η
lab, a labeled dataset subject to CCCN

1) Compute λ̂α and λ̂β using (19) and (18).

2) Compute values for α and β by solving λ̂β = β − β2 and λ̂α = α− α2.

3) Select the unique admissible solution (α̂, β̂).

4) Compute a model θ̂ by using equations (9).
Output: θ̂, an estimate of the target model.

We now introduce a learning algorithm, NB-CCCN (algorithm 1), which learns naive
Bayes classifiers from labeled data subject to class-conditional classification noise.

Let S
−→η
lab be a data set drawn according to P

−→η . For any pair of attributes xi and xj
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and for any pair of elements (a, b) ∈ Dom(xi)×Dom(xj), let

Ĉa,bi,j = (P̂
−→η
+ (xi = a)− P̂−→η− (xi = a))(P̂

−→η
+ (xj = b)− P̂−→η− (xj = b)),

D̂a,b
i,j = P̂

−→η
+ (a, b)− P̂

−→η
+ (xi = a)P̂

−→η
+ (xj = b)

Êa,bi,j = P̂
−→η
− (a, b)− P̂

−→η
− (xi = a)P̂

−→η
− (xj = b),

where P̂
−→η
+ and P̂

−→η
− are empirical estimates of P

−→η
+ and P

−→η
− computed on S

−→η
lab. An

estimate λ̂β of λβ = β − β2 is computed by :

λ̂β =

∑
Ĉa,bi,j Ê

a,b
i,j∑

(Ĉa,bi,j + D̂a,b
i,j + Êa,bi,j )2 − 4D̂a,b

i,j Ê
a,b
i,j

(18)

where the sums are taken over all pairs (i, j) of attributes and all pair of values (a, b) ∈
Dom(xi)×Dom(xj). Similarly, an estimate λ̂α of α− α2 is computed by :

λ̂α =

∑
Ĉa,bi,j D̂

a,b
i,j∑

(Ĉa,bi,j + D̂a,b
i,j + Êa,bi,j )2 − 4D̂a,b

i,j Ê
a,b
i,j

(19)

Then, let β1 and β2 (resp. α1 and α2) be the two solutions of λ̂β = β − β2 (resp.
λ̂α = α − α2). Only one pair (αi, βj) is compatible with the hypotheses. A model is
then computed by using equations (9).

4.4 Algorithm to learn naive Bayes models under CCCN using E.M.

Given a sample S
−→η
lab composed of labeled examples subject to class-conditional clas-

sification noise, we could build a Naive Bayes classifier by using maximum likelihood
estimates if we could know which examples have been corrupted. But unfortunately,
this piece of information is missing. E.M. is a standard method which can be used
in such situations. Let θk be a naive Bayes model for the data and let −→ηk = (η0

k, η
1
k)

be a noise model. For any example (x, y) ∈ S
−→η
lab, we can compute the probability

Pr(C(x, y)|θk ,−→ηk) (denoted by Pk(C(x, y)) ) that (x, y) has been corrupted by noise
in the model θk,−→ηk :

Pk(C(x, y)) =
P (1− y|x, θk)η1−y

k

P (1− y|x, θk)η1−y
k + P (y|x, θk)(1− ηyk)

(20)

By using this formula, we can compute for any z ∈ {0, 1} the probability that the
label of the example were z before the noise step, and then compute new models θk+1 =
{plk+1 = Pk+1(y = l), P ialk+1 = Pk+1(xi = a|y = l)} and −−→ηk+1 = {η0

k+1, η
1
k+1} by

maximizing the likelihood of these new data. Knowing that n = |S
−→η
lab|, S

−→η
l = {(x, y) ∈

S
−→η
lab|y = l}, probabilities plk+1, P ialk+1, ηlk+1 are computed as follows :

n · plk+1 =
∑

(x,l)∈S
−→η
l

(1− Pk(C(x, l))) +
∑

(x,1−l)∈S
−→η
1−l

Pk(C(x, 1− l)) (21)
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Algorithm 2 NB-CCCN-EM Learning Naive Bayes classifiers with class-conditional
classification noise using E.M.

Input: S
−→η
lab, a labeled dataset subject to CCCN

1) Run algorithm NB-CCCN, θ0= model infered by this algorithm
2) ∀(x′, y′) ∈ S

−→η
lab, compute Pr(C(x, y)|θk ,−→ηk) using formulas (20)

3) Compute a new model θk+1 using formulas (20), (21), (22) and (23)
4) Iterate to step 2 until stabilization

Output: θ̂ML

n · P ialk+1 =
∑

(x,l)∈S
−→η
l

|xi=a

(1− Pk(C(x, l))) +
∑

(x,1−l)∈S
−→η
1−l

|xi=a

Pk(C(x, 1− l)) (22)

ηlk+1 =

∑
(x,1−l)∈S

−→η
1−l

Pk(C(x, 1− l)
∑

(x,l)∈S
−→η
l

(1− Pk(C(x, l))) +
∑

(x,1−l)∈S
−→η
1−l

Pk(C(x, 1− l)) (23)

We note NB-CCCN-EM the corresponding algorithm.

4.5 Algorithm to compute naive Bayes models from unlabeled data
In this section, we use the formulas provided by (Geiger et al., 2001) (cf Section 2.2)

to compute naive Bayes models parameters from unlabeled data. Note that the zij...r
can be estimated from data. Note also that two models can be computed ; each of them
depending on the sign of u1. We deduce from these formulas Algorithm NB-UNL.

Experimental results on artificial data (Section 5.1) show that large samples are ne-
cessary to provide accurate estimates of the parameters of the target models.

Algorithm 3 NB-UNL : compute naive Bayes models from unlabeled data
Input: z

1) Estimate u+
k =

P
1≤i,j≤m
i6=j 6=k

√
zkizkjzij+(zkij)2/4

P
1≤i,j≤m,i6=j 6=k

zij
∀k ∈ {1, ..,m}, u−k = −u+

k

2) Estimate s+ = −
P

1≤i,j,k≤m,i6=j 6=k
zijk

P
1≤i,j,k≤m,i6=j 6=k

2uizjk
, s− = −s+

3) Compute model θ+ from u+
1 and u+

i or u−i (i > 1) according to the sign of z1i i.e.
such that sign(ui) = sign(z1i/(p2(s)u+

1 ))
4) Compute model θ− from u−1 and u+

i or u−i (i > 1) according to the sign of z1i i.e.
such that sign(ui) = sign(z1i/(p2(s)u−1 ))

Output: two models θ+ and θ−.
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5 Experiments
We present now our experiments on artificial data and data from the UCI repository.

5.1 Results on artificial data
5.1.1 Protocol

The target model θt = {P (y = 1), P+, P−} is randomly drawn, P+ and P− being
product distributions over {0, 1}10. The learning datasets are generated using θt. For
each size in {100, 200, ..., 2000}, 200 independent datasets are drawn. The results (Fi-
gures 1 and 2, Table 1) are averages computed on these 200 datasets. The class labels
computed by θt are flipped with probability η1 for examples (x, 1) and η0 for examples
(x, 0). Test sets Stest contain 1000 examples generated from θt. The classes of the test
data are computed according to θt ; they are not corrupted by any noise.

5.1.2 Accuracy of the target probabilities estimates

We first compare the accuracy of estimates provided by four algorithms : algorithm
NB-CCCN, standard naive bayes algorithm (denoted by NB), algorithm NB-CCCN-EM
and algorithm NB-UNL. The criteria for comparison are the Kullback-Leibler distance
dkl between the target distribution P (., .) and the predicted distribution P̂ (., .) and the
difference ∆p between the target parameter P (y = 1) and the corresponding predicted
parameter P̂ (y = 1). Figure 1 shows the evolution of the averaged Kullback-Leibler
distance between the inferred models and the target model as a function of |Slab| and
Figure 2 shows the evolution of ∆p.

These results show that algorithms NB-CCCN and NB-CCCN-EM provide accurate
estimates of the target and converge really fast in comparison to other algorithms. Es-
timates computed by algorithm NB-UNL converge slowly and provide results far from
the performances of other algorithms.

We have carried out other experiments where EM is run on randomly drawn initial
models : many runs are necessary to obtain a high likelihood while using the model
inferred by NB-CCCN as the initial model makes it possible to run EM only once.

5.1.3 Prediction rate results

We now present the results obtained for classification tasks. The experimental pro-
tocol is described in Section 5.1.1. Two criteria are considered to compare the four
algorithms : the prediction rate (P̂ (f(x) = y)) on test data (denoted by acc in table 1)
and the classical F value, defined by F = 2·TP

FP+2·TP+FN ; where TP is the number of
positive examples correctly classified, FP the number of negative examples incorrectly
classified and FN the number of misclassified positive examples. The results for both
criteria are reported in table 1. These results show that NB-CCCN and NB-CCCN-EM
converge quickly towards the target in comparison to NB-UNL. Standard naive Bayes
algorithm obviously does not identify the target model. The results of this section illus-
trate the theoretical results stated in the previous sections.
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FIG. 1 – The Kullback-Leibler distance between the target model and the inferred one
as a function of the size of the training sample. We set η0 = 0.2 and η1 = 0.5.

FIG. 2 – ∆p = |P (y = 1)− P̂ (y = 1)| as a function of the size of the training sample.
We set η0 = 0.2 and η1 = 0.5.

Algorithm |Slab| 100 500 1000 2000
θt acc 0.899 0.899 0.899 0.899

F 0.903 0.903 0.903 0.903
NB acc 0.726 0.753 0.762 0.766

F 0.649 0.693 0.708 0.715
NB-CCCN acc 0.743 0.867 0.882 0.892

F 0.774 0.868 0.885 0.896
NB-CCCN acc 0.858 0.890 0.895 0.898
-EM F 0.857 0.893 0.898 0.901

NB-UNL acc 0.673 0.761 0.803 0.801
F 0.609 0.729 0.771 0.768

TAB. 1 – Results for experiments on artificial data, for each algorithm, we report the
accuracy acc=P̂ (f(x) = y) and the F-valueF . The examples have 10 binary descriptive
attributes. Values of noise parameters : η0 = 0.2, η1 = 0.5. Best results are in boldface.
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Dataset |S| NbAtt |Dom(xi)|
House Votes 433 16 2
Tic Tac Toe 958 9 3

Hepatitis 155 19 2-10
Breast Cancer 286 9 2-11

B. C. Wisc. 699 9 10
Bal. Scale 576 4 5

TAB. 2 – Description of the five UCI datasets where |S| is the size of the datasets,
NbAtt the number of attributes, |Dom(xi)| the size of the attribute domains.

5.2 Results on UCI repository datasets
This section presents experiments on five datasets from the UCI repository (Merz &

Murphy, 1998) and shows that the performances of NB-CCCN and NB-CCCN-EM on
real data remain very good even when class-conditional classification noise is added to
the data.

We test our algorithms and naive Bayes algorithm on datasets : House Votes, Tic Tac
Toe, Hepatitis, Breast Cancer, Breast Cancer Wisconsin, and Balance Scale (see table 2
for description of the datasets). In this last dataset, we have only used data whose class
is ”right” or ”left” and ruled out those whose class is ”balanced”.

As for the experimental protocol, we first run algorithms on the datasets without
adding noise ; secondly, we added noise to the learning data according to the noise
parameters η0 = 0.2 and η1 = 0.5 without modifying classes of the test data and
we relaunch the algorithms on these noisy data (see table 3 for results). We have
used 10-folds cross-validation per experiment and the results are averaged over 10
experiments.

The results on House Votes, Hepatitis and Breast Cancer Wisconsin datasets clearly
show that the noise added to the data has significantly been erased by NB-CCCN and
NB-CCCN-EM, keeping a rather high classification accuracy. The results on Tic Tac Toe
and Breast Cancer are close to those obtained by the majority class rule but naive Bayes
classifiers are unadapted to these datasets. For Balance Scale dataset, both NB-CCCN
and NB-CCCN-EM are significantly less accurate when noise is added to the learning
examples. Nevertheless, the results remain much better than the majority class rule.
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Dataset Noise MajCl NB NB-CCCN NB-CCCN-EM
η0 = 0 acc 0.617 0.904 0.916 0.882
η1 = 0 lk - -3134 -3035 -2915

House Votes η0 = 0.2 acc 0.383 0.866 0.900 0.873
η1 = 0.5 lk - -4130 -3037 -3041−→̂

η - - (0.33, 0.58) (0.20, 0.56)

η0 = 0 acc 0.653 0.697 0.682 0.697
η1 = 0 lk - -8726 -8854 -8726

TicTacToe η0 = 0.2 acc 0.347 0.562 0.664 0.587
η1 = 0.5 lk - -8828 -8818 -8815−→̂

η - - (0.24, 0.62) (0.21, 0.56)

η0 = 0 acc 0.790 0.827 0.850 0.770
η1 = 0 lk - -1982 -2416 -1902

Hepatitis η0 = 0.2 acc 0.240 0.590 0.811 0.758
η1 = 0.5 lk - -2095 -2273 -1946−→̂

η - - (0.25, 0.55) (0.29, 0.45)

η0 = 0 acc 0.703 0.730 0.760 0.718
η1 = 0 lk - -2520 -2682 -2448

Br. Cancer η0 = 0.2 acc 0.327 0.581 0.732 0.722
η1 = 0.5 lk - -2573 -2623 -2479−→̂

η - - (0.19, 0.59) (0.33, 0.56)

η0 = 0 acc 0.655 0.973 0.972 0.975
η1 = 0 lk - -7244 -7790 -7096

Br. C. Wisc. η0 = 0.2 acc 0.345 0.964 0.967 0.974
η1 = 0.5 lk - -9015 -7818 -7395−→̂

η - - (0.02, 0.05) (0.22, 0.50)

η0 = 0 acc 0.500 0.994 0.980 0.993
η1 = 0 lk - -3485 -3445 -3484

BaL. Scale η0 = 0.2 acc 0.500 0.743 0.847 0.794
η1 = 0.5 lk - -3611 -3710 -3611−→̂

η - - (0.10, 0.52) (0.06, 0.36)

TAB. 3 – Prediction rate (acc), log-likelihood (lk) and noises estimates obtained by the
four algorithms for UCI datasets without noise and when noises η0 = 0.2 and η1 = 0.5
are added to the training examples
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6 Conclusion
We provide analytical formulas which can be used to learn Naive Bayes classifiers

under class-conditional classification noise. The algorithms we design achieve good
performances in classification on both artificial and real data. However, it would be
interesting to precise the rate of convergence of our estimators and provide theoretical
bounds. The experiments we have carried out suggest that CCC-noise can be eliminated
from data while noisy test data cannot witness to this elimination. This observation must
be related to Equation (3) which shows that minimizing the empirical risk on noisy data
is not a consistent strategy when the noise rates are high. Future work should include
the description of a consistent learning principle in the CCCN learning framework.
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