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ABSTRACT

Motivation: Protein insolubility is a major obstacle for many
experimental studies. A sequence-based prediction method able
to accurately predict the propensity of a protein to be soluble on
overexpression could be used, for instance, to prioritize targets in
large-scale proteomics projects and to identify mutations likely to
increase the solubility of insoluble proteins.
Results: Here, we first curate a large, non-redundant and balanced
training set of more than 17 000 proteins. Next, we extract and study
23 groups of features computed directly or predicted (e.g. secondary
structure) from the primary sequence. The data and the features are
used to train a two-stage support vector machine (SVM) architecture.
The resulting predictor, SOLpro, is compared directly with existing
methods and shows significant improvement according to standard
evaluation metrics, with an overall accuracy of over 74% estimated
using multiple runs of 10-fold cross-validation.
Availability: SOLpro is integrated in the SCRATCH suite of predictors
and is available for download as a standalone application and as a
web server at: http://scratch.proteomics.ics.uci.edu.
Contact: pfbaldi@ics.uci.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Producing soluble recombinant proteins on overexpression is a
prerequisite for many structural, functional and biochemical studies.
Escherichia coli is the most commonly used host for the expression
of recombinant proteins, because it is relatively fast and inexpensive
to manipulate genetically, and it usually results in high protein
yields (Idicula-Thomas and Balaji, 2005; Ventura, 2005). However,
even in E.coli overexpression often yields insoluble proteins. For
instance, overexpressed proteins can form misfolded aggregates
called inclusion bodies (Clark, 1998; Ventura, 2005; Wilkinson
and Harrison, 1991). In these cases, solubilization and refolding
strategies, such as the use of fusion proteins (Davis et al.,
1999), co-expression of chaperones (Trésaugues et al., 2004), weak
promoters (Makrides, 1996) or protein engineering methods (Izard
et al., 1994; Murby et al., 1995), are attempted. However, these
difficult and expensive procedures do not ensure solubility (Singh
and Panda, 2005). Thus, for many proteomic projects, it would be
helpful to have computational methods capable of: (i) identifying
proteins that are likely to be problematic from a solubility standpoint;
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and (ii) guiding protein engineering approaches aimed at addressing
solubility issues.

Over the past two decades several research groups have developed
methods for predicting protein solubility from the sequence. One
of the first studies (Wilkinson and Harrison, 1991) analyzed six
sequence-based features (average charge, turn-forming residue
fraction, cysteine fraction, proline fraction, hydrophilicity and total
number of residues) and the solubility of the corresponding proteins
on overexpression. These authors found a strong correlation of
solubility with average charge and turn-forming residue fraction and
proposed a binary prediction model as well as a ranking model. Since
then several other projects have found strong relationships between
primary sequence characteristics and solubility on overexpression
in E.coli (Bertone et al., 2001; Christendat et al., 2000; Goh et al.,
2004; Idicula-Thomas and Balaji, 2005; Luan et al., 2004). There is
a significant overlap among the features identified by these studies,
and the differences can be largely attributed to differences in the
datasets. These projects provide evidence that primary sequence
is the main determinant of solubility, given the same host and
same experimental conditions. Furthermore, several studies of the
impact of single-site mutations on protein solubility (Malissard and
Berger, 2001; Murby et al., 1995) provide an additional evidence
that primary sequence determines solubility.

The model proposed in Wilkinson and Harrison (1991) was
initially evaluated on a set of 81 proteins, with a reported accuracy of
88%. In spite of the prediction models proposed by several authors
(Bertone et al., 2001; Christendat et al., 2000; Goh et al., 2004;
Idicula-Thomas and Balaji, 2005; Luan et al., 2004), the slightly
revised Wilkinson–Harrison solubility model (Davis et al., 1999)
was widely considered to be the most accurate method up to fairly
recently (Ahuja et al., 2006; Koschorreck et al., 2005). However,
Idicula-Thomas and Balaji (2005) evaluated the Wilkinson–Harrison
model on a small set and reported a prediction accuracy <50%. More
recently, Smialowski et al. (2007) evaluated the Wilkinson–Harrison
model on a balanced and redundancy-reduced set of 14 200 proteins
and reported an accuracy of only 56.2%. Similarly, Smialowski et al.
(2007) evaluated the prediction model proposed in Idicula-Thomas
and Balaji (2005) on their set of 14 200 proteins and reported an
accuracy of only 53.1%. The accuracy of the model proposed in
Idicula-Thomas et al. (2006) was estimated at 72%, but using an
unbalanced test set containing 67% insoluble proteins. Indeed, issues
of small, or unbalanced, or redundant training sets have hampered
the field for quite some time.

In part to address these issues, Smialowski et al. (2007) prepared
a large balanced training set of proteins overexpressed in E.coli.
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Using this training set, they built the PROSO predictor and reported
an accuracy of 71.7%, achieving significant improvements over the
Wilkinson–Harrison solubility model. However, the redundancy of
the sequences in this dataset was only reduced at the 50% sequence
identity level using the CD-HIT program (Li et al., 2001), when
a 25% or 30% level is considered necessary to sufficiently reduce
the bias introduced by the presence of homologs in the training and
test sets (Rost, 1999). The estimated accuracy of 71.7% decreases to
59.3%, when evaluated on a dataset curated with a 25% similarity
cutoff (see Section 3.3).

To curate appropriate datasets for training machine learning
models and obtain realistic estimates of the performance of these
models, the issues of dataset size, redundancy and balance must
be dealt with rigorously. Thus, here we begin by curating a large,
balanced and non-redundant set of proteins expressed in E.coli
(SOLP). From this dataset, we extract and study several sequence-
based feature sets and finally develop a two-stage support vector
machine (SVM) architecture to predict the propensity of a protein
to be soluble on overexpression in E.coli. The resulting method,
SOLpro, is evaluated by repeated 10-fold cross-validations, and by
direct comparison to previous methods on our training set.

2 DATASETS AND METHODS
In this section, we describe the three main methodological steps: (i) the
preparation of a rigorous set of soluble and insoluble proteins; (ii) the
extraction and analysis of several sequence-based feature sets; and (iii)
the derivation of SOLpro, to predict protein solubility. For convenience,
the names assigned to datasets always appear in bold.

2.1 SOLP: a new set of proteins for solubility
prediction

Only a few public databases provide information on the solubility of
recombinant proteins. In addition, even when solubility status is provided,
the experimental details under which solubility was assessed are often not
reported. As a result, it is challenging to extract a consistent dataset, in terms
of expression system and experimental conditions (Idicula-Thomas et al.,
2006). The most widely used expression system is E.coli, thus we focus
on this system in our data preparation. As in most other solubility studies,
we make the reasonable assumption that the experimental conditions, which
have become a standard protocol in E.coli, are relatively homogeneous.

To prepare our dataset SOLP, we: (i) extracted and selected proteins
from the PDB, SwissProt and TargetDB databases; (ii) merged these protein
subsets with the proteins used in Idicula-Thomas and Balaji (2005); (iii)
reduced the redundancy of the sequences with a rigorous threshold (25%
similarity); and (iv) balanced the resulting protein set (Sections 2.1.1–2.1.5).
Basic statistics on SOLP and its subsets are given in Table 1.

2.1.1 PDB subset of relevant soluble proteins The Protein Data Bank
(Berman et al., 2000) contains about 55 000 protein structures. Annotations
available for each protein in the database make it possible to identify
which proteins were expressed in E.coli. We first extracted proteins
expressed in E.coli (with the PDB annotation ‘EXPRESSION_SYSTEM:
ESCHERICHIA COLI’) using a plasmid vector, the most common vector
type (with the annotation ‘EXPRESSION_SYSTEM_VECTOR_TYPE:
PLASMID’). If a protein met these conditions, each one of its chains was
included as an independent member of our dataset. The sequence of each
chain was extracted using the PDB ‘SEQRES’ annotation. This protocol
resulted in the PDB-Ecoli subset, containing almost half of the chains
in the PDB database. The final set of PDB relevant proteins, PDB-RP, was

Table 1. SOLP: size and composition of the various datasets (-RP indicates
relevant proteins obtained after filtering)

Subset Size Soluble (%) Insoluble (%)

PDB-Ecoli 44 450 100 0
PDB-RP 38 572 100 0

SP-enzymes 3306 100 0
SP-RP 3045 100 0

TDB-expressed 76 503 36.84 63.16
TDB-RP 70 707 37.68 62.32

ITB-train 175 22.86 77.14
ITB-RP 158 22.78 77.22

SOLP-redundant 112 482 60.72 39.28
SOLP-unbalanced 19 793 43.98 56.02
SOLP 17 408 50.00 50.00

derived by removing from PDB-Ecoli sequences with any of the following
characteristics:

• The protein is likely a membrane protein according to annotation
or prediction by TMHMM (Krogh et al., 2001). Membrane proteins
are not soluble on overexpression without particular solubilization
strategies (Sanders et al., 2004).

• The primary sequence has two or more contiguous unknown amino
acids. Some proteins in the PDB contain long stretches of unknown
residues and these regions provide no information for sequence based
predictors.

• The sequence length is outside the range [10:2000]. The extremely
short peptides do not correspond to independently folded proteins.
The extremely long sequences, which represent <0.05% of the PDB
sequences, are not handled appropriately by the external tools used to
predict features. Both the extremely short and extremely long sequences
create outliers in the training set that tend to harm the training process.

2.1.2 SwissProt subset of E.coli enzymes The SwissProt database (The
UniProt Consortium, 2007) contains numerous E.coli proteins. Their
solubility in E.coli is not systematically documented. However, the E.coli
enzymes can reasonably be assumed to be soluble in E.coli. To ensure
a rigorous set of soluble proteins, we limited our selection to SwissProt
proteins annotated as: ‘E.coli’, ‘Enzyme’ and ‘Reviewed’. Sequences in the
resulting set, noted SP-enzymes, were then filtered using the same rules
as the proteins of the PDB database (Section 2.1.1). We finally obtained
a set of 3045 enzymes, called SP-RP. Note that some of these proteins
are included in the PDB subset PDB-RP, and were removed during the
redundancy reduction step (Section 2.1.5).

2.1.3 TargetDB subset of relevant proteins The PDB organizers created
TargetDB (Chen et al., 2004) to centralize target sequences and progress
status from essentially all of the worldwide structural genomics projects.
For each target, the feature ‘status’ provides the list of achieved preparation
steps, such as ‘cloned’, ‘expressed’, ‘soluble’ and ‘purified’. The primary
shortcoming of the ‘status’ annotation is that it does not explicitly indicate if
a protein is found to be insoluble. Proteins found to be soluble are indicated
explicitly with the ‘soluble’ tag, but a missing annotation does not necessarily
mean an insoluble protein.

Another significant shortcoming of the TargetDB annotation is that it does
not indicate which expression system was used in the experiments. We know
that 77.2% of the 6536 proteins found in the intersection of the TargetDB and
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Table 2. Amino acids alphabets used to compute frequencies of monomers, dimmers and trimers

Name Amino acid groups Description

Natural-20 A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y Natural amino acid alphabet

Hydropho-5 CFILMVW, NQSTY, DEKR, AG, HP Grouped by hydrophobicity (Idicula-Thomas et al., 2006)

ConfSimi-7 ACEKLMQR, FHWY, ITV, DN, G, P, S Grouped by conformational similarity (Idicula-Thomas et al., 2006)

BlosumSM-8 CILMV, DENQ, FWY, AG, KR, ST, H, P Grouped according to BLOSUM50 substitution matrix (Idicula-Thomas et al., 2006)

ClustEM-14 DEQ, AH, FW, IV, ST, C, G, K, L, M, N, P, R, Y Grouped from eight numeric scales using EM algorithm (Smialowski et al., 2007)

ClustEM-17 DE, IL, NQ, A, C, F, G, H, K, M, P, R, S, T, V, W, Y Grouped from eight numeric scales using EM algorithm (Smialowski et al., 2007)

PhysChem-7 AGILPV, FWY, HKR, CM, DE, NQ, ST Grouped according to physico-chemical properties: aliphatic, aromatic, positively

charged, sulphurated, negatively charged, amide, alcohol.

Amino acids groups are separated by commas.

PDB databases were expressed in E.coli. If we assume that the proportion
is similar for the rest of TargetDB, then ∼20% of the proteins in the final
dataset SOLP were expressed using a host other than E.coli. This problem
is mitigated by that fact that many of the proteins expressed in other hosts
would have similar solubility properties if expressed in E.coli. However, the
problem cannot be avoided entirely, since the TargetDB is the most important
source of data for this prediction problem and the only source of insoluble
proteins.

To create a dataset from TargetDB, we started by extracting the subset
of proteins annotated as ‘Cloned’ and ‘Expressed’ (TDB-expressed),
the minimum preparation steps in order to observe the solubility, and not
annotated as ‘Work Stopped’ since the reason for stopping work on a target
is not reported. Of the remaining proteins, we classified those annotated
as ‘Soluble’ as soluble, and all others as insoluble. Then, we removed
the irrelevant or undesirable sequences following the rules described in
Section 2.1.1. In addition, we removed proteins classified as insoluble that
have an identical match to a PDB chain, finally, resulting in the TDB-RP
dataset.

2.1.4 Datasets from previous studies Most of the datasets used in previous
works have a significant overlap with the union of PDB-RP and TDB-RP.
One notable exception is the training set used in Idicula-Thomas and
Balaji (2005). We also considered this set of 175 sequences, referred to
as ITB-train, and filtered it, using the rules described in Section 2.1.1,
resulting in ITB-RP containing 158 sequences.

2.1.5 Final training set of proteins As discussed in Section 1, previous
studies were based on datasets that were either too small, or contained a
high level of redundancy, or were unbalanced. Evaluation performed on
small datasets have low confidence and the corresponding models have poor
generalization capabilities. Since we collected large sets of relevant proteins,
the dataset size is not an issue here. Evaluation performed on redundant
datasets is biased due to the presence of clear homologs in the training and
test sets. To overcome the issue of redundancy, we first merged together the
sets of relevant proteins PDB-RP, SP-RP, TDB-RP and ITB-RP to form
SOLP-redundant. With 112 482 proteins, SOLP-redundant provides
a solid basis for generating a large, non-redundant and balanced dataset. The
redundancy of SOLP-redundantwas then reduced using BLASTCLUST
(Altschul et al., 1997). Two proteins were considered redundant, and thus
in the same cluster, when the aligned parts of the sequences have >25%
similarity with a 50% minimum sequence length coverage required for at
least one of the two sequences. Due to the low similarity cutoff, many clusters
contain both soluble and insoluble proteins. We randomly selected one
member from each cluster to form the SOLP-unbalanced dataset. Using
this protocol, 82.4% of the sequences in SOLP-redundantwere removed.
Finally, in order to clarify the interpretation of the experimental results
and to make a comparison with previous prediction methods possible, we
balanced the soluble and insoluble protein subsets of SOLP-unbalanced
by randomly removing insoluble proteins until the subsets were equal in

size. Our final training set SOLP contains 17 408 proteins (8704 soluble and
8704 insoluble). Supplementary Table 1 provides a breakdown of SOLP by
protein database origin.

2.2 Sequence-based features
Strong relationships between several primary sequence characteristics and
protein solubility have been previously reported, as described in Section 1.
However, no clear consensus has emerged from these studies. In this work,
SOLP is used to independently evaluate the correlation with solubility of
23 distinct feature sets. The details of these feature sets are provided below.
For convenience, the names assigned to each set always appear in square
brackets.

2.2.1 Description of the sequence-based feature sets The sequences in
SOLP are described by 23 distinct feature sets, of which 19 were previously
described and four are novel. The origin of each feature set is clearly indicated
in the description below.

Of the 23 feature sets, 21 are frequencies of amino acid monomers, dimers
and trimers using seven different alphabets, including the natural 20 amino
acid alphabet and six reduced alphabets described in Table 2. The 21 sets are
denoted by [Name-S:X], where Name is the name given to the alphabet
in Table 2, and S is the size of the corresponding alphabet. X takes the
value M, D or T associated with the frequencies of monomers, dimers
and trimers over the corresponding alphabet (e.g. [Hydropho-5:M],
[Hydropho-5:D] and [Hydropho-5:T]). The three sets computed
from the alphabet PhysChem-7 are novel. The two remaining feature sets
are described below.

• [Computed]: features directly computed from the sequence (Ahuja
et al., 2006; Idicula-Thomas and Balaji, 2005; Idicula-Thomas et al.,
2006; Wilkinson and Harrison, 1991) consist of:

(1) Sequence length n.

(2) Turn-forming residues fraction: (N +G+P+S)/n, where, for
instance N is the number of asparagine residues in the sequence.

(3) Absolute charge per residue: | R+K−D−E
n −0.03|.

(4) Molecular weight.

(5) GRAVY index, defined as the averaged hydropathy value (Kyte
and Doolittle, 1982) of the amino acids in the primary sequence.

(6) Aliphatic index: (A+2.9V +3.9I +3.9L)/n (Ikai, 1980).

• [Predicted]: this novel feature set consists of features predicted
from the sequence using the SCRATCH suite of predictors (Cheng
et al., 2005):

(1) Beta residues fraction, as predicted by SSpro (Cheng et al., 2005).

(2) Alpha residues fraction, as predicted by SSpro.

(3) Number of domains, as predicted by DOMpro (Cheng et al., 2006).
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Table 3. Size of the feature sets corresponding to dimer and trimer
frequencies before and after the feature selection process

Feature set Initial features Selected features

[Natural-20:D] 400 13
[Natural-20:T] 8000 24
[Hydropho-5:D] 25 10
[Hydropho-5:T] 125 12
[ConfSimi-7:D] 49 20
[ConfSimi-7:T] 343 15
[BlosumSM-8:D] 64 25
[BlosumSM-8:T] 512 21
[ClustEM-14:D] 196 16
[ClustEM-14:T] 2744 22
[ClustEM-17:D] 289 27
[ClustEM-17:T] 4913 42
[PhysChem-7:D] 49 21
[PhysChem-7:T] 343 12

The specific features selected are provided in Supplementary Table 3.

(4) Exposed residues fraction, as predicted by ACCpro (Cheng et al.,
2005), using a 25% relative solvent accessibility cutoff.

In all the following experiments, each feature is normalized to [−1,+1].

2.2.2 Feature selection The sizes of the feature sets, corresponding to
the frequencies of dimers and trimers, range from 25 ([Hydropho-5:D])
to 8000 ([Natural-20:T]). Irrelevant or redundant features are well
known to affect machine learning algorithms and increase computation time
drastically. We use the wrapper method described in Kohavi and John (1997)
to find relevant feature subsets, because their heuristic selection method is
appropriate for large datasets and feature spaces. We use Naive Bayes as
the induction algorithm and a depth-first search as the selection algorithm.
The evaluation function to be optimized is the accuracy estimated by
10-fold cross-validation. The selection process is stopped when the standard
deviation (SD) of the accuracies computed during the last five steps does not
exceed 0.01. The numbers of selected features are shown in Table 3 and the
selected features are reported in Supplementary Table 3.

2.3 Solubility prediction
The 23 feature sets calculated on proteins in SOLP were first studied
independently of each other to compare empirically their correlations with
solubility. Then, standard techniques for combining several representations
of a training dataset into a global prediction method were applied. Ensemble
methods (Dietterich, 2000) performed better than single classifiers during
these experiments, so we designed a two-stage architecture to predict the
propensity of a protein to be soluble on overexpression in E.coli. The
remainder of this section presents the comparative study of the feature sets
as well as the final architecture retained and the corresponding evaluation
protocol.

2.3.1 Comparative study of the feature sets Each feature set described in
Section 2.2 was applied to the 17 408 sequences in SOLP. Some of these
sequence features have been found to be correlated with solubility in the
past, specifically those in [Computed] as well as some of the monomer,
dimer and trimer frequencies (Idicula-Thomas and Balaji, 2005; Idicula-
Thomas et al., 2006; Smialowski et al., 2007; Wilkinson and Harrison, 1991).
However, because of the small size or redundancy of the training sets used
in these studies, and because we propose to include new features, here we
perform a comparative analysis of all the feature sets using SOLP.

For this comparative analysis, we applied three machine learning
algorithms to the data associated with each feature set: k-nearest neighbors

Table 4. Accuracies of the individual prediction models computed from the
individual feature sets

Feature Set kNN NN SVM

Monomer frequencies
[Natural-20:M] 60.99 (2) 62.63 (1) 64.39 (1)
[ClustEM-17:M] 60.87 (3) 61.94 (2) 64.05 (2)
[ClustEM-14:M] 61.83 (1) 61.70 (3) 63.65 (3)
[PhysChem-7:M] 60.01 (4) 59.12 (7) 61.89 (4)
[BlosumSM-8:M] 58.15 (14) 57.13 (12) 60.20 (10)
[ConfSimi-7:M] 57.17 (17) 57.11 (13) 59.63 (12)
[Hydropho-5:M] 56.56 (20) 55.58 (20) 58.75 (20)

Dimer frequencies
[PhysChem-7:D] 58.67 (10) 59.40 (4) 61.60 (6)
[ClustEM-14:D] 59.21 (6) 58.11 (9) 60.75 (7)
[ClustEM-17:D] 59.15 (7) 58.13 (8) 60.71 (8)
[BlosumSM-8:D] 57.37 (16) 57.44 (10) 60.41 (9)
[Natural-20:D] 58.50 (13) 56.23 (16) 59.65 (11)
[ConfSimi-7:D] 56.49 (22) 56.84 (15) 59.56 (13)
[Hydropho-5:D] 56.52 (21) 56.91 (14) 58.86 (19)

Trimer frequencies
[ClustEM-17:T] 58.60 (11) 57.42 (11) 59.55 (14)
[PhysChem-7:T] 58.54 (12) 55.72 (18) 59.25 (16)
[Hydropho-5:T] 57.12 (18) 55.50 (21) 58.96 (17)
[ConfSimi-7:T] 57.85 (15) 55.60 (19) 58.91 (18)
[ClustEM-14:T] 58.69 (9) 53.98 (22) 58.59 (21)
[BlosumSM-8:T] 57.01 (19) 56.03 (17) 58.58 (22)
[Natural-20:T] 55.81 (23) 50.67 (23) 54.79 (23)

Other feature sets
[Computed] 59.57 (5) 59.38 (5) 61.67 (5)
[Predicted] 59.12 (8) 59.17 (6) 59.38 (15)

Overall accuracy ranking for each machine learning method is shown in parentheses
and the highest accuracy for each feature set is shown in bold.

(kNN), neural networks (NN) and SVMs. For kNN and NN, we used Weka
(Witten and Frank, 2005), and for SVM we used LIBSVM (Chang and
Lin, 2001), which implements the sequential minimal optimization (SMO)
algorithm proposed in Fan et al. (2005). We tuned the hyperparameters
of each algorithm to maximize the accuracy computed by 10-fold cross-
validation. Results are reported in Table 4. Note that the accuracy estimated
by 10-fold cross-validation for each training set is reported only for the most
accurate model computed by each algorithm.

2.3.2 Single classifiers Several techniques to combine the various feature
sets and individual features into a global prediction method were applied.
The first approach was to build a single classifier that used all, or a subset,
of the features considered in the 23 feature sets described in Section 2.2.
For this aim, all of the individual features from the 23 feature sets were
grouped together into a single large feature set. A variety of feature selection
procedures were performed on the large feature set and we experimented with
various architectures. The highest accuracy obtained by any single classifier
trained on multiple feature sets was 68%, which is only a few percent higher
than the best classifier trained on an individual feature set. (Table 4).

2.3.3 Ensemble classifiers Ensemble methods aim to improve
performance by pooling the predictions made by many individual
predictors in some way (Dietterich, 2000). We tested various ensemble
methods to evaluate their potential as global classifiers taking as input, for
instance, the 23 binary predictions or probability estimates computed by
the primary classifiers on each sequence. Most of the ensemble methods
obtained an overall accuracy >70% (for brevity’s sake detailed results
of the various combinations are not reported). Based on the results of
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these experiments the probability estimates produced by the 23 first-layer
SVMs were selected as the input to the second-stage ensemble predictor,
implemented also as an SVM (although NNs performed equally well). The
accuracy of the resulting architecture was ∼73%.

Next, we tested each single feature as an additional input to the second-
layer classifier and found that the normalized sequence length was the
only feature to improve the global performance of the method (by ∼1%),
thus this feature was included as an input to the second-layer classifier.
Finally, we tested for irrelevant or redundant first-layer classifiers using
the feature selection method described in Kohavi and John (1997). To
apply their method, we used an SVM for the induction step and a best-
first-backward search for the selection step. Three primary classifiers were
removed, specifically those computed from the sets [Hydropho-5:D],
[BlosumSM-8:T] and [PhysChem-7:T]. Removing these classifier’s
results in a simpler architecture with marginally improved performance
(+0.3% in accuracy).

2.3.4 SOLpro: a two-stage SVM-based architecture The final SOLpro
architecture is summarized here. After experimentation and feature selection,
20 primary SVM predictors are retained, associated with 20 different feature
sets. The 20 probability estimates produced by the primary predictors and
the normalized sequence length make up the 21 final inputs to the second
stage SVM combiner. The probability estimate produced by the second stage
SVM is the final SOLpro prediction.

2.3.5 Evaluation and comparison with previous methods Repeated
10-fold cross-validations were launched, using different randomized
balanced splits of SOLP, to derive a reliable estimate of the accuracy
(Dietterich, 1998; Kohavi, 1995). Note that for each cross-validation
experiment, the classifiers of the two layers are computed without using
any information about the test proteins. We mention this explicitly because
multi-layered methods sometimes use different splits of data for different
layers, which can bias the accuracy estimates.

The following standard evaluation criteria were computed: accuracy,
precision, recall, Matthews correlation coefficient, area under the receiver
operating characteristic (ROC) curve and gain [Specificity(class)/P(class)]
for each class. When the classes are balanced, as in this work, the gain is
equal to two times the specificity. In spite of its redundance, we include
it for the sake of direct comparison with previous work. Average values
for each metric computed over 10 runs of 10-fold cross-validations (100
values) are given in Table 5.

We also evaluated our own implementation of the revised Wilkinson–
Harrison model (Davis et al., 1999) on SOLP, as well as PROSO (Smialowski
et al., 2007) by directly applying the PROSO web server to SOLP. PROSO
was proposed recently and shown to outperform previous methods in a
comparative study led by the authors. Results are reported in Table 5 and
discussed in Section 3.3.

2.3.6 Evaluation on homologous proteins In order to test SOLpro’s
predictive abilities on clashing protein pairs, i.e. pairs of proteins that are
highly homologous with different solubility annotation, we started from
SOLP-redundant (Table 1) and computed the clusters of homologous
proteins defined by a 95% identity cutoff, with minimum sequence length
coverage of 95% for both sequences. We only kept those clusters containing
both soluble and insoluble proteins (804 clusters). These clusters contained
3075 proteins (1490 soluble and 1585 insoluble), representing 3598 clashing
pairs of proteins. The associated probability estimates predicted by SOLpro
were then compared for each clashing pair. Results are given and discussed
in Section 3.4.

3 RESULTS AND DISCUSSION

3.1 Features sets and machine learning methods
3.1.1 Comparative study of the feature sets It is informative to
study the relationships between feature sets and solubility. The

Table 5. Evaluation of SOLpro, RevWH and PROSO on the SOLP dataset,
with SOLpro results in bold

Method PROSOa PROSOb RevWHc SOLpro
Dataset -a SOLP SOLP SOLP
# Proteins 14200 16901d 17408 17408

Accuracy 71.70 59.28 53.75 74.15
MCC 0.434 0.184 0.076 0.487
Recall (soluble) 0.685 0.506 0.471 0.681
Recall (insoluble) 0.749 0.674 0.604 0.803
Precision (soluble) 0.732 0.595 0.543 0.775
Precision (insoluble) 0.704 0.591 0.533 0.715
Gain (soluble) 1.463 1.225 1.087 1.550
Gain (insoluble) 1.408 1.150 1.066 1.431
ROC area (AUC) 0.781 ND ND 0.742

The published results of PROSO on their own dataset are also indicated in the leftmost
column and shown in italics.
aMethod proposed in Smialowski et al. (2007), evaluated by the authors on a dataset
they prepared. Results are those given in the reference.
bMethod proposed in Smialowski et al. (2007), evaluated on SOLP using the web server
available at http://mips.gsf.de/proso/proso.seam.
cRevised Wilkinson–Harrison solubility model (Davis et al., 1999).
dThe 507 proteins in SOLPwere rejected by the PROSO web server due to the presence
of unknown amino acids in the primary sequence.

23 feature sets, described in Section 2.2, were analyzed using the
protocol described in Section 2.3.1. Results are reported in Table 4
where the feature sets are grouped into four categories: monomer,
dimer, trimer frequencies and the two remaining sets ([Computed]
and [Predicted]). It is worth noting that our approach is global,
since we studied the correlation of each entire feature set, and not its
individual feature components, with solubility. The various feature
sets were compared in terms of the prediction accuracy of the models
that were trained on them. While it is possible that performances
obtained using other machine learning techniques could vary slightly
from what we observed, global tendencies can be determined by
comparing the results obtained using the three distinct machine
learning algorithms (kNN, NN and SVM) that were applied to each
dataset.

The models trained on monomer frequencies are the most accurate
of any models trained on individual features sets. Specifically, the
models trained using [Natural-20:M], [ClustEM-17:M]
and [ClustEM-14:M] are the top three overall using all three
machine learning algorithms. Also, [PhysChem-7:M] is fourth
overall using kNN and SVM. These results confirm the conclusions
given in Idicula-Thomas et al. (2006) and Smialowski et al. (2007),
and emphasize the importance of amino acid first-order statistics.

The models computed from the sets of dimer
frequencies [PhysChem-7:D], [ClustEM-14:D] and
[ClustEM-17:D] are always ranked between the 4th and the
10th positions overall, regardless of the machine learning algorithm
used. These models tend to be less accurate than those computed
from monomer frequencies.

As a group, the trimer models are clearly the least accurate.
The highest ranking trimer model, by any algorithm, is that of
[ClustEM-14:T] which ranks nineth overall using kNN. The
trimer models from the native alphabet [Natural-20:T] have
the worst accuracy overall using all three algorithms. This could be
partially explained by the drastic reduction in the number of features
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in this feature set resulting from the feature selection procedure
(from 8000 down to 24 features, see Table 3).

The models computed from the features that were found
strongly correlated with solubility in previous studies, grouped
in [Computed], are always ranked fifth overall. These results
confirm that these features are relevant for this problem.

Surprisingly, predicted properties of the proteins, grouped in
the set [Predicted], provide classifiers with performances
very close to those obtained from [Computed], despite the
noise introduced by prediction errors. It is interesting to note
that [Predicted] has only four features, the fewest of the 23
feature sets, and still produces accurate models. Except the classifier
obtained with the SVM algorithm, these classifiers are almost as
accurate as those obtained from [Computed], and are ranked,
respectively, sixth and eighth overall for the NNs and kNNs methods.

Although the models calculated from some of the feature sets are
significantly less accurate than others, we decided to consider all the
feature sets in the second part of our work (Sections 2.3.3 and 2.3.4)
since ensemble methods are well known to take advantage of weak
classifiers.

3.1.2 Comparison of the machine learning methods For each
feature set, the performance of the models resulting from the
kNN, NN and SVM machine learning methods are reported in
the columns of Table 4. For 21 of the 23 feature sets, the
resulting SVM model outperformed the corresponding kNN and NN
models. The exceptions were the kNN models calculated from the
[ClustEM-14:T] and [Natural-20:T] feature sets, which
had only slightly higher accuracies than the corresponding SVM
models. Overall, the SVM models were the most accurate, thus,
classifiers of the first-layer in our final architecture were trained
using SVMs.

3.2 Evaluation of SOLpro
The two-stage SVM-based architecture we proposed to predict
solubility was evaluated on SOLP following the protocol described
in Section 2.3.5. Results are reported in the last column of
Table 5. The reported evaluation measures are the means of
the corresponding 100 values obtained from 10 independently
performed 10-fold cross-validation experiments. The SD of the
accuracy was 0.044, the SDs of the other measures were also very
small and thus, are not reported. The small SDs attest to the stability
of the method.

The overall accuracy of SOLpro is 74.15% with a threshold of
0.5. To the best of our knowledge, this is higher than the reported
accuracy of any previous method, except the published accuracy
of the Wilkinson–Harrison model proposed in 1991 and evaluated
on 81 proteins. SOLpro correctly classifies 68.1% of the soluble
proteins and 80.3% of the insoluble proteins. This difference results
directly from the slight bias of SOLpro towards insoluble-class
predictions (43.9% predicted as soluble and 56.1% predicted as
insoluble). The precision on the predicted soluble proteins is actually
higher (77.5%) than the precision on the predicted insoluble proteins
(71.5%). One possible explanation for the slight bias towards
predicting proteins as insoluble is the difference in diversity of the
soluble and insoluble subsets. Nearly all the insoluble proteins come
from the redundant TargetDB database, while the soluble proteins
come from diverse sources. Even after performing the rigorous

redundancy reduction, as described in Section 2.1.5, the residual
redundancy in these sets may still be an issue. This interpretation is
supported by the results of our evaluation of PROSO, the prediction
model proposed in Smialowski et al. (2007), which was trained on
a dataset with similar characteristics to SOLP, but with redundancy
reduction performed using 50% identity as a cutoff. When evaluated
on SOLP, PROSO predicts 57.2% of the proteins to be insoluble,
and its prediction accuracy on soluble proteins is 17% lower than
on insoluble proteins. The larger gaps observed in the evaluation
of PROSO support the notion that the redundancy of the insoluble
proteins plays a role in the bias towards predicting insoluble proteins.

To analyze potential biases related to database origin, we broke
down the performance results by database origin (see Supplementary
Table 4). The most relevant result is that SOLpro is more accurate
on the soluble PDB proteins (82.20%) than on the soluble TargetDB
proteins (65.25%). Two important factors must be taken into
account when considering this difference. First, the criteria for
solubility in PDB are likely to be more stringent than for TargetDB.
Second, the weaker 65.25% performance on TargetDB is <5%
below the accuracy of SOLpro on soluble proteins. In addition,
the higher accuracy of SOLpro on PDB proteins may be a positive
characteristic that could be useful for in silico screening of protein
targets in connection with structural proteomic projects.

The Matthews correlation coefficient of SOLpro is 0.487, which
is also higher than the previously reported values. This measure
summarizes the confusion matrix in a single value and is considered
a relevant indicator of a methods performance. The last measure
computed is the area under the ROC curve (AUC). SOLpro achieves
an AUC of 0.742.

3.3 Comparison with previous methods
Here, we compare SOLpro to the revised Wilkinson–Harrison
solubility model (Davis et al., 1999) and PROSO (Smialowski et al.,
2007) because these are two of the most recognized methods in the
literature and because PROSO was shown to outperform all other
methods. The evaluation is made using SOLP, note that the original
Wilkinson–Harrison validation set contains only 81 proteins and the
dataset from Smialowski et al. (2007) is not available. The protocol
for comparing the methods is described in Section 2.3.5 and the
results are reported in Table 5 and Supplementary Table 4.

The Wilkinson–Harrison solubility model correctly classified
53.75% of the proteins and obtained a MCC of 0.076. These
results are consistent with those reported in previous works (Idicula-
Thomas and Balaji, 2005; Smialowski et al., 2007), indicating that
this model does not generalize well.

PROSO correctly classified 59.3% of the proteins in SOLP
(soluble: 50.6%, insoluble: 67.4%), compared with 74.2% by
SOLpro (refer to Table 5). Database growth may partially explain
the higher accuracy of SOLpro, since it was prepared using more
data. However, PROSO is a recent method and was trained on a
dataset likely to have a significant overlap with SOLP due to the
similar data curation protocol, with the primary difference being the
less-rigorous redundancy reduction. In fact, the reported accuracy
of PROSO on the Smialowski et al. (2007) dataset is 71.7% and it
is very likely that the higher degree of redundancy in their dataset
contributes to the 12.4% difference between the two evaluations.

In combination, these results demonstrate that the architecture
derived in this study is well suited for solubility prediction, given the
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complexity of the problem. The significant efforts made to curate a
large, non-redundant and balanced dataset and to reduce the potential
biases at each step of the derivation provide confidence that SOLpro
has good generalization capability. In addition, when compared
with the previous methods, SOLpro demonstrates a significant
improvement in the prediction of protein solubility.

3.4 Evaluation on homologous proteins
Here, we evaluated SOLpro on clashing pairs of highly homologous
proteins (Section 2.3.6). It must be noted that predicting the
solubility of such clashing pairs is inherently a very challenging
problem, and the difficulty is compounded by the fact that there
is noise in the data and data annotations. For instance it is likely
that some proteins annotated as insoluble are actually soluble (see
Section 2.1.3). For 60.12% of the 3598 clashing pairs, the soluble
protein is correctly ranked above the insoluble homolog using the
predicted probabilities. While not optimal, this performance level
is well above random and provides some information about which
proteins are more likely to be soluble among very similar sequences.
This is significant for protein engineering applications where, for
instance, a small number of residues in an insoluble protein are
mutated in order to increase its solubility.

4 CONCLUSIONS
Prediction of protein solubility is an important but difficult problem.
The complexity is compounded by the ambiguous definition of
solubility itself, the many sequence independent factors that affect
solubility, and the lack of annotation in databases. These reasons
explain, in part, why it is challenging to obtain highly accurate
classifiers despite the dominant role of the primary sequence in
determining the solubility of a protein. In this work, we have
presented a new method, SOLpro, for predicting the propensity of a
protein to be soluble on overexpression in E.coli from the primary
sequence. Throughout the development of SOLpro, we have made
every effort to address, as much as possible, the issues discussed
above.

First, we have focused our work on predicting solubility in
E.coli and have carefully curated a large, non-redundant and
balanced dataset. Second, we have derived a large set of features
comprising both previously described features and novel ones. We
have studied these features by feature selection and by analysis
of correlation between feature sets and performance. The results
on the previously reported features are consistent with previous
studies showing, for instance, that the frequencies of monomers
are particularly relevant features. The results also show that the
novel features, such as predicted secondary structure, can improve
prediction performance. Third, we have used machine learning
methods to leverage the large training set, robustly handle noise
and errors in the data, and accommodate the imprecise definition
of solubility. After experimenting with various architectures, we
converged on a two-tier SVM-based strategy where the primary
classifiers, computed from individual feature sets, provide input to a
second-layer ensemble classifier to make final predictions. SOLpro
produces both solubility probabilities and binary class predictions.
Finally, we have evaluated the binary predictions of the method on
the dataset we prepared and compared the performances of SOLpro
with those of previous methods. The results show that SOLpro is

a suitable method for this problem and significantly outperforms
previous methods. Proteomic projects where initial target selection
is important could take advantage of SOLpro, as could protein
engineering projects seeking to alter solubility.

Conflict of Interest: none declared.
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